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Chapter 8 
 

Snowmelt runoff problem 
 
 
8.1 Introduction 
 

Design of water resource systems generally relies on historical data such as streamflow 

records or records of extreme floods. Probability and statistics have been used extensively to 

characterize the large uncertainties in such hydrologic phenomena. Valencia and Schaake 

(1972) and Reese and Krzysztofowicz (1989) discuss a number of stochastic models in 

hydrology. 

The purpose of disaggregation models in particular is to estimate a quantity of interest 

(e.g., total precipitation) over short periods of time (e.g., quarterly or monthly) given the total 

for a longer time period (e.g., total annual precipitation). Such estimates are often useful in 

forecasting. For example, if  is the total precipitation during month i, then 

 is a vector of monthly precipitation amounts. A stochastic disaggregation 

model for this vector amounts to a multivariate conditional probability density function of 

the form , where 

wi

w = +( ,..., )w wn1 1

w 1

)|,...,( 11 wwwf n+

                             0w wn1 1+ + =+... , 1< < ∞ = +w i ni , ,..., . (8.1) 
 

Obtaining a conditional density  that yields the desired conditional means, 

variances, and covariances of the  is a difficult and as yet unsolved problem 

(Krzysztofowicz and Reese, 1991). Stedinger, Pei, and Cohn (1985) and Krzysztofowicz and 

Reese (1991a) discuss this problem in more detail. 

)|,...,( 11 wwwf n+

wi
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Krzysztofowicz and Reese (1991) developed a new approach for addressing the 

disaggregation problem. Their approach concentrates on developing a density function for 

the seasonal pattern ( ,...,w w w wn1 1+ ) , rather than for the unnormalized vector 

 In particular, they use stochastic bifurcation processes (section 3.3) to model 

the disaggregation process, and attempt to select particular bifurcations that match the 

observed conditional dependence structures where possible. Krzysztofowicz and Reese noted 

that the resulting densities satisfy the required balance  equation (8.1), and allow a wide 

variety of distribution shapes.  

).,...,( 11 +nww

Reese and Krzysztofowicz (1991) applied the adaptive Dirichlet distribution to data on 

snowmelt runoff. In particular, they analyzed monthly runoff data for 14 western United 

States rivers. They were interested particularly in the fraction of total annual runoff occurring 

in each month. In describing snowmelt runoff patterns ( ,...,w w w wn1 + )1 , they found that 

the correlations among these fractions were a reasonable way to characterize the seasonal 

patterns at particular rivers. Reese and Krzysztofowicz hypothesized that the vector of 

fractions at a given river was generated from an adaptive Dirichlet distribution, and tested 

that assumption. They found the model valid for about one-half to two-thirds of the rivers 

tested, and therefore concluded that the adaptive Dirichlet distribution is useful, but not 

sufficiently general, because it is restricted by two structural assumptions. First, the 

composition is assumed to be stochastically independent of the size of the basis (i.e., the total 

seasonal runoff); second, the ratios of the fractions (defined in chapter 3) are assumed to be 

mutually independent. Some rivers violated one or both of these assumptions. Thus, 

Krzysztofowicz  and Reese pointed out the need to construct multivariate distributions on the 
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simplex that can accommodate the remaining rivers whose seasonal runoff patterns exhibit 

dependence structures cannot be represented using their model. 

We propose using adaptive Dirichlet distributions with dependent ratios (chapter 5) to 

analyze the same problem. We will apply our model to all rivers considered by Reese and 

Krzysztofowicz, even the ones where their model performed well, to see whether our model 

performs "better" in some of those cases. In fact, our model has more degrees of freedom 

than theirs, so we would expect our model to perform at least somewhat better than theirs in 

general; the question of how much better will be addressed in the next sections. In particular, 

we will compare the means, variances, and correlation matrices obtained from their model 

and ours with the empirical data as a reference point. Through this comparison, we hope to 

find that our model preserves the empirical correlation sign structures for most of the 14 

rivers, even those where the model of Reese and Krzysztofowicz did not preserve the signs. 

As proposed by Krzysztofowicz and Reese, one possible approach to measure the 

"closeness" of the model correlations to the empirical correlations is to compute the 

Euclidean distance between the correlation matrix of our model (or the adaptive Dirichlet 

model without dependent ratios) and the empirical correlation matrix. This Euclidean 

distance is given by 
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where  is the empirical correlation between  and , and 

 is the corresponding correlation resulting from the adaptive Dirichlet 

distribution with (or without) dependent ratios. 
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Our work in this chapter will concentrate on the seasonal patterns . 

We hypothesize that this vector of fractions was generated from an adaptive Dirichlet 

distribution in which two of the ratios are dependent, as defined in chapter 5. With the 

exception of this assumption, the development of the multivariate conditional densities of 

 will follow the same steps as used by Krzysztofowicz and Reese. 

( / ,..., / )w w w wn1 1+

)|,...,( 11 www n+

 
8.2 Stochastic disaggregation methodology 
 

Let  denote the total seasonal runoff at a particular location. Let n+1 be the number of 

months in a season, and let  be a vector of monthly runoff amounts such that 

. Dividing by  yields a vector x

w

),...,( 11 += nwww

wwn
i i =∑ +
=

1
1 w ),...,( 11 += nxx  describing the seasonal pattern of 

runoff, where  

w
wx i

i = ,      1,...,1 += ni , 

 (8.3) 
The set of all possible vectors x is an n-dimensional simplex as defined in section 2.3. In 

chapter 5, we showed how to construct a joint density of the fractions vector x under the 

assumption that some of the ratios of these fractions are correlated. 

As Krzysztofowicz and Reese point out, for each value of n (n=2,3,….) there exists a set 

of possible bifurcation topologies. Furthermore, each topology is associated with a set of 

possible permutations of fractions. Each combination of a basic topology with a permutation 

of fractions generates a family of multivariate densities on the n-dimensional simplex. By 

considering this rich family of structural densities, Krzysztofowicz and Reese were able to 
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identify density functions with correlation structures “close” to the empirical correlation 

structures evidenced by the data for most rivers.  

In comparing the results of the two models, our work will consider the data, topologies, 

and permutations that were chosen by Reese and Krzysztofowicz for each river, but will 

allow the two most strongly correlated ratios to be dependent. (We could, of course, allow 

more than two ratios to be dependent, but for simplicity in the multivariate density g  of the 

fractions we will restrict ourselves to just two dependent ratios.) 

Reese and Krzysztofowicz studied 14 rivers. Due to short runoff seasons, eight of these 

rivers have only four fractions; i.e., x = ( , , , )x x x x1 2 3 4 . They used topology 2-2 (given by 

figure 8.1) for four of these eight, and topology 1-3 (i.e., the Connor-Mosimann distribution 

defined by figure 8.2) for the other four.  For the remaining fourteen rivers, they used the 

topologies shown in Table 2. These particular topologies were selected in order to match the 

model correlation structure to the empirical structure evidenced by the data. 
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            x1             x2                x3           x4  
 

Figure 8.1 Double-cascaded bifurcation topology of four fractions (taken from Krzysztofowicz and 

Reese, 1991). 
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            x1             x2             x3           x4 
 
Figure 8.2 Cascaded bifurcation topology of four fractions (taken from Krzysztofowicz and Reese, 

1991). 

            
8.3 Expressions for moments and density 
 

Expressions for the means, variances, and covariances of the fractions  are derived 

from the mixed moments of the ratios , denoted 

ix
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where  and  for all ),...,( 1 nmm=m mi = 0 1 2 3, , , ,L .,...,1 ni =  When these mixed moments of 

ratios are replaced by their empirical estimates $µm , the resulting expressions estimate the 

moments of the fractions . These estimators are distribution-free, since they do not depend 

upon the functional form of the density of the ratios. 

ix

For example, for the double-cascaded topology shown in figure 8.1, we have 
 
x y y1 1= 2

y 2

y 3

y 3 )

, 
 
x y2 11= −( ) , 
 
x y3 21= −( ) , and 
 
x y4 21 1= − −( )( . (8.5) 
 
This system of four equations has a unique inverse given by 
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 (8.6) 
x x x x1 2 3 4 1+ + + = . 
 

The Jacobian of this transformation is  ⎟⎟
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. Note that there are three ratios 

(i.e., , , and ) defined by the four fractions . 1y 2y 3y ix

Mean Values. The mean values of the  are given by          ix
 

E( ) ( , , )x1 1 1= µ 0

1 0

1 1

, 
 
E( ) ( , , ) ( , , )x2 0 1 0 1= −µ µ , 
 (8.7) 
E( ) ( , , ) ( , , )x3 0 0 1 0= −µ µ , and 
 
E( ) ( , , ) ( , , ) ( , , )x4 0 0 1 0 1 0 0 1 11= − − +µ µ µ . 

 
Variances. The variances of the  are given by x i

 
var( ) ( )( , , ) ( , , )x 1 2 2 0 1 1 0

2= −µ µ , 
 
var( ) ( )( , , ) ( , , ) ( , , ) ( , , ) ( , , )x 2 0 2 0 1 2 0 2 2 0 0 1 0 1 1 0

22= − + − −µ µ µ µ µ , 
  
var( ) ( )( , , ) ( , , ) ( , , ) ( , , ) ( , , )x 3 0 0 2 0 1 2 0 2 2 0 0 1 0 1 1

22= − + − −µ µ µ µ µ , and (8.8) 
 
var( ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )x 4 0 1 0 0 0 1 0 2 0 0 0 2 0 1 11 2 2 4= − − + + + −µ µ µ µ µ  
 

2 2 10 1 2 0 1 1 0 2 2 0 1 0 0 0 1 0 1 1
2µ µ µ µ µ µ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )( )− + − − − +  
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Covariances. The covariances of x  and  (i x j i j≠ )  are given by 
 

cov( , ) ( )( , , ) ( , , ) ( , , ) ( , , ) ( , , )x x1 2 1 2 0 2 2 0 1 1 0 0 1 0 1 1 0
2= − − +µ µ µ µ µ , 

 
cov( , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )x x1 3 1 1 1 1 2 1 1 1 0 0 0 1 1 1 0 0 1 1= − − +µ µ µ µ µ µ , 
 
cov( , ) [ ( , , ) ( , , ) ( , , ) ( , , ) ( , , )x x1 4 1 2 0 1 1 0 0 1 0 1 1 1 1 2 1= − − + − −µ µ µ µ µ  
 

µ µ µ µ( , , ) ( , , ) ( , , ) ( , , ) ]1 1 0 0 0 1 1 1 0 0 1 1+ , 
 (8.9) 

−µ+µ−µ−µ= )1,2,1()1,1,1()1,2,0()1,1,0(32 ),cov( xx  
 

)1,1,0()0,1,1()1,0,0()0,1,1()1,1,0()0,1,0()1,0,0()0,1,0( µµ−µµ+µµ+µµ , 
 
cov( , ) [var( ) cov( , ) cov( , )]x x x x x x2 4 2 1 2 2 3= − + x+ , and 
 
cov( , ) [var( ) cov( , ) cov( , )]x x x x x x3 4 3 1 3 2 3= − + x+ . 
 
Equations for other topologies could be derived in the same manner.  

 
Remark 8.1 
 
1)  None of the above expressions depend on the functional form of the density function  of 

the ratios. Also note that we have not yet imposed any restriction on the ratios . If all 

ratios are independent, then we have 

iy

.)1,0,0()0,1,0()0,0,1()1,1,1( µµµ=µ   Similarly, if  is 

independent of , but  and  are correlated, then we have 

2y

),( 31 yy 1y 3y )1,0,1()0,1,0()1,1,1( µµ=µ  

and  , and so on. =µ )0,2,2( )0,0,2()0,2,0( µµ

2)  If all three ratios are independent, then our model is simply the adaptive Dirichlet with 

independent ratios. If two of the ratios are correlated, then the resulting model is the 

adaptive Dirichlet with dependent ratios. 
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3)  Equations (8.8) and (8.9) above determine the correlation matrix of the xi. This means 

that neither the correlation matrix nor the mean values of the xi depend on the functional 

form of g(x). 

As an example, if  and  are assumed to be correlated and both are independent of 

, g  has the general form  

1y 3y

2y ( )x

g g y g y y J( ) ( ) ( , ) ( )x y= →2 2 13 1 3 x

)

,  (8.10) 
 
where  could for example be a  copula   density  function  as  given   in equation (5.5), 

and  is the Jacobian of the transformation from 

13g

J (y x→ y x→ .  

Letting g13(y1,y3) be one of Frank's family of distributions, then we have  
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where  is a parameter expressing the degree of correlation between  and . Also, if we 

let  for , then by equation (8.10) the joint density of  is given by  
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1 1 3 3 2 1 1 2 3 3α β α β α α β β α β− − − − − − − −+ +( ) ( ) , (8.12) 
 

where the marginals G1(y1) and G3(y3) are the cumulative distribution functions (cdf's) of the 

beta marginal distributions for  and . (Note that we use Frank's copula because it has the 

ability to describe strong positive and negative correlations, as discussed in chapter 5.) 

1y 3y

The parameters ( ) of the beta distributions for the yii βα , i (i=1,…,n) can be estimated 

using the equations 



 117

2

2

ˆ
]ˆˆ)ˆ1[(ˆ

i

iiii
i σ

σ−µµ−µ
=α ,  and 
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where  and  are empirical estimates of the mean and variance, respectively, of the ratio 

y

iµ̂
2ˆ iσ

i ( Krzysztofowicz and Reese, 1991).  

The strength-of-dependence parameter δ  appearing in equation (8.12) can be estimated 

using trial and error, as follows: Let γ = cov( , )y y1 3  be estimated from the data. Then we 

wish to choose the density  to satisfy ),( 3113 yyg

                       )(E)(E)(E 3131 yyyy −=γ , (8.14) 

where  is the mean of  computed according to the joint density function 

. The R.H.S. of this equation is a function of 

)(E 31 yy 31 yy

),( 3113 yyg δ , and the L.H.S. is computed from 

the data. By trying different values of δ , it is possible to match the L.H.S. to any desired 

degree of precision, because Frank’s copula can model any correlation in the interval [-1,1].  

 
8.4 Strategy of analysis 
 

As we said earlier, in comparing the results of the two models, our work will consider the 

same topologies, permutations of fractions, and data that were used by Reese and 

Krzysztofowicz for each river (as displayed in table 2 and appendix 1), but will allow the two 

most strongly correlated ratios to be dependent. For the rivers with short runoff seasons, we 

also consider models in which the two ratios assumed to be dependent do not have the 

strongest correlation; this provides a basis for comparison, especially in cases where the 
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correlation sign structure is not preserved by the model with the strongest correlation. We 

now describe the procedure we use to analyze the data:  

1.  First, we order the monthly runoffs  to match the permutation of  chosen 

by Reese and Krzysztofowicz for each river. 

w x xn1 ,..., +1

2.  We next transform each vector of monthly runoffs  into a vector of monthly 

fractions x.  

w

3.  Considering the topology chosen by Reese and Krzysztofowicz for the river that we 

are dealing with, we then define the ratios yi of fractions associated with this 

topology, and transform each vector of fractions x into a vector of ratios y. From the 

resulting set of these annual vectors, we estimate the empirical correlation matrix of 

ratios, and determine the two most strongly correlated ratios for each river.  

4.  All empirical correlations of the  are tested to see whether they are statistically 

significant; the null hypothesis is that a given correlation coefficient  is equal to 

zero. The two-tailed test uses the Student-Fisher t distribution with k-2 degrees of 

freedom: 

yi

ρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ−
−

ρ= 2ˆ1
2ˆ kt , (8.15) 

 
where ρ  is the sample correlation coefficient and k is the sample size (i.e, the number 

of years for which runoff data is available). The hypothesis that  can be rejected 

at the significance level p if 

ˆ

0=ρ

)2,( −> kptt , a tabulated critical value (Hoshmand, 

1988). We test this null hypothesis at level of significance .05; .01; and .001. 
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5.  The t-test described in step 4 above is also applied to the correlation coefficients of 

any  fractions    affected  by sign reversals.  ix

6.  From the data on the observed vectors of  ratios y,  we estimate the mixed moments 

needed to compute the means, variances, and covariances of the fractions  

according to equations (8.7-8.9) (or the corresponding set of equations for the 

selected topology). These moments are used to compute the correlations of the 

fractions for both the case with independent ratios and the case with dependent ratios. 

ix

7.  Finally, for each river, we compute the Euclidean distance, as given by (8.2), between 

the correlation matrix achieved by our model (or the adaptive Dirichlet distribution 

with independent ratios, respectively) and the empirical correlation matrix. 

 
8.5 Analysis and results 

 
Below we list the questions to be answered by our analysis of each river:   
 
1. Do the empirical means match the empirical means given by Reese and 

Krzysztofowicz (1989)?  

2. What are the two most strongly correlated ratios? 

3. Are the signs of the correlations preserved under the independent ratios model? 

4. Are the signs of the correlations preserved under the dependent ratios model(s)? 

5. Are the correlations with unpreserved signs statistically significant under the t-test 

described above?   

6. Is the Euclidean distance between the empirical correlations and the dependent ratios 

model(s) less than the distance between the empirical correlations and the 

independent ratios model? 
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Boise (Table A-1) 

1. The average discrepancy between our empirical means and those of Reese and 

Krzysztofowicz's empirical means is 0.2%. The reasons for this discrepancy are unclear. 

2.  and  are the two most strongly correlated ratios. 1y 3y

3. The signs of the correlations are preserved under the independent ratios model. 

4. The signs of the correlations are also preserved under all three dependent ratios models 

considered for this river. 

5. Not applicable. 

6. The Euclidean distance between the empirical correlations and the dependent ratios 

model is at least as small as the distance between the empirical correlations and the 

independent ratios model, for all three dependent ratios models considered for this river. 

Note: As illustrated in table 3, the Euclidean distance when  and  are assumed to be 

dependent is actually smaller than the Euclidean distance when  and  are assumed to be 

dependent, even though  and  are more strongly correlated than  and .  

1y 2y

1y 3y

1y 3y 1y 2y

Weiser (Table A-2) 

1. The empirical means match the corresponding values given by Reese and 

Krzysztofowicz. 

2.  and  are the two most strongly correlated ratios. 2y 3y

3. The signs of the correlations are preserved under the independent ratios model. 

4. The signs of the correlations are also preserved under all three dependent ratios models 

considered for this river. 

5. Not applicable. 
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6. The Euclidean distance between the empirical correlations and the dependent ratios 

model is less than the distance between the empirical correlations and the independent 

ratios model, for all three dependent ratios models considered for this river. 

Little Truckee (Table A-3) 

1. The average disecrepancy between our empirical means and those of Reese and 

Krzysztofowicz is 1.5%. The reasons for this discrepancy are unclear. 

2.  and  are the two most strongly correlated ratios. 1y 2y

3. The signs of the correlations are preserved under the independent ratios model. 

4. The signs of the correlations are also preserved under all three dependent ratios models 

considered for this river. 

5. Not applicable. 

6. The Euclidean distance between the empirical correlations and the dependent ratios 

model is less than the distance between the empirical correlations and the independent 

ratios model, for all three dependent ratios models considered for this river. 

Gila (Table A-4) 

1. The average discrepancy between our empirical means and those of Reese and 

Krzysztofowicz's empirical means is 1.0%. The reasons for this discrepancy are unclear. 

2.  and  are the two most strongly correlated ratios. 1y 2y

3. The sign of  is not preserved under the independent ratios model. ),(corr 42 xx

4. The sign of  is not preserved under any of the three dependent ratios models 

considered for this river. 

),(corr 42 xx



 122
5.  is not statistically significant at the 0.05 level under the t-test described 

above. 

),(corr 42 xx

6. The Euclidean distance between the empirical correlations and the dependent ratios  

model is less than the distance between the empirical correlations and the independent 

ratios model, for all three dependent ratios models considered for this river. 

Salmon (Table A-5) 

1. The empirical means match the corresponding values given by Reese and 

Krzysztofowicz. 

2.  and  are the two most strongly correlated ratios. 2y 3y

3. The signs of the correlations are preserved under the independent ratios model. 

4. The signs of the correlations are also preserved under all three dependent ratios models 

considered for this river. 

5. Not applicable. 

6. The Euclidean distance between the empirical correlations and the dependent ratios 

model is less than the distance between the empirical correlations and the independent 

ratios model, for all three dependent ratios models considered for this river. 

Falls (Table A-6) 

1. The empirical means match the corresponding values given by Reese and 

Krzysztofowicz. 

2.  and  are the two most strongly correlated ratios. 1y 2y

3. The signs of the correlations are preserved under the independent ratios model. 
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4. The signs of the correlations are also preserved under all three dependent ratios models 

considered for this river. 

5. Not applicable. 

6. The Euclidean distance between the empirical correlations and the dependent ratios 

model is less than the distance between the empirical correlations and the independent 

ratios model, for all three dependent ratios models considered for this. 

Humboldt (Table A-7) 

1. The average discrepancy between our empirical means and those of Reese and 

Krzysztofowicz is 0.5%. The reasons for this discrepancy are unclear. 

2.  and  are the two most strongly correlated ratios. 1y 2y

3. The signs of the correlations are preserved under the independent ratios model. 

4. The signs of the correlations are also preserved under all three dependent ratios models 

considered for this river. 

5. Not applicable. 

6. The Euclidean distance between the empirical correlations and the dependent ratios 

model is less than the distance between the empirical correlations and the independent 

ratios model, for all three dependent ratios models considered for this river. 

Sevier (Table A-8) 

1. The average discrepancy between our empirical means and those of Reese and 

Krzysztofowicz is 0.06%. The reasons for this discrepancy are unclear. 

2.  and  are the two most strongly correlated ratios. 1y 3y
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3. The sign of  and  are not preserved under the independent ratios 

model. 

),(corr 21 xx ),(corr 41 xx

4. None of the dependent ratios models preserve the sign of . The sign of 

 is preserved under the dependent ratios model where  and  are assumed 

to be dependent, but not under the other models. 

),(corr 41 xx

),(corr 21 xx 1y 2y

5. Neither  nor  is statistically significant at the 0.05 level under the 

t-test described above. 

),(corr 21 xx ),(corr 41 xx

6. The Euclidean distance between the empirical correlations and the dependent ratios 

models is at least as small as the distance between the empirical correlations and the 

independent ratios model, except for the dependent ratio model where  and  

considered to be dependent.   

1y 2y

Note 1: For this river, Reese and Krzysztofowicz (1989) apparently did not recognize that the 

signs of  and  were not preserved under their model, although it is 

clear from the table given on page 111 of their report. 

),(corr 21 xx ),(corr 41 xx

Note 2: The only model under which the sign of  is preserved (namely, the model 

in which  and  are assumed to be dependent) is also the only dependent ratios model 

that yields a Euclidean distance larger than that for the independent ratios model. Thus, the 

criteria of sign preservation and minimization of Euclidean distance appear to be at odds for 

this river. 

),(corr 21 xx

1y 2y

 

 

Verde (Table A-9) 
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1. The empirical means match the corresponding values given by Reese and 

Krzysztofowicz. 

2.  and  are the two most strongly correlated ratios. 1y 4y

3. The sign of  is not preserved under the independent ratios model. ),(corr 41 xx

4. The sign of  is also not preserved under the dependent ratios model. ),(corr 41 xx

5.   is not statistically significant at the 0.05 level under the t-test described 

above. 

),(corr 41 xx

6.  The Euclidean distance between the empirical correlations and the dependent ratios model 

is less than the distance between the empirical correlations and the independent ratios 

model. 

Salt (Table A-10) 

1. The empirical means match the corresponding values given by Reese and 

Krzysztofowicz. 

2.   and  are the two most strongly correlated ratios. 2y 4y

3. The signs of the correlations are preserved under the independent ratios model. 

4. The signs of the correlations are also preserved under the dependent ratios model. 

5. Not applicable. 

6. The Euclidean distance between the empirical correlations and the dependent ratios 

model is less than the distance between the empirical correlations and the independent 

ratios model. 

 
Little Colorado (Table A-11) 
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1. The average discrepancy between our empirical means and those of Reese and 

Krzysztofowicz is 1.0%. The reasons for this discrepancy are unclear. 

2.  and  are the two most strongly correlated ratios. 1y 3y

3. The sign of  is not preserved under the independent ratios model. ),(corr 42 xx

4. Under the dependent ratios model, the sign of  is preserved, but the sign of 

 is no longer preserved. 

),(corr 42 xx

),(corr 52 xx

5. Neither  nor  is statistically significant at the 0.05 level under the 

t-test described above. 

),(corr 42 xx ),(corr 52 xx

6. The Euclidean distance between the empirical correlations and the dependent ratios 

model is less than the distance between the empirical correlations and the independent 

ratios model. 

Yellowstone (Table A-12) 

1. The average discrepancy between our empirical means and those of Reese and 

Krzysztofowicz is 0.6%. The reasons for this discrepancy are unclear. 

2.  and  are the two most strongly correlated ratios. 4y 5y

3. The signs of  and  are not preserved under the independent ratios 

model. 

),(corr 41 xx ),(corr 54 xx

4. Under the dependent ratios model, the sign of  is preserved, but the sign of  

 is still not preserved. 

),(corr 54 xx

),(corr 41 xx

5. Neither  nor  is statistically significant at the 0.05 level under the 

t-test described above. 

),(corr 41 xx ),(corr 54 xx
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6. The Euclidean distance between the empirical correlations and the dependent ratios 

model is less than the distance between the empirical correlations and the independent 

ratios model. 

Payette (Table A-13) 

1. The empirical means match the corresponding values given by Reese and 

Krzysztofowicz. 

2.  and  are the two most strongly correlated ratios. 2y 4y

3. The sign of  is not preserved under the independent ratios model. ),(corr 61 xx

4. The sign of  is also not preserved under the dependent ratios model. ),(corr 61 xx

5.  is not statistically significant at the 0.05 level under the t-test described 

above. 

),(corr 61 xx

6. The Euclidean distance between the empirical correlations and the dependent ratios 

model is less than the distance between the empirical correlations and the independent 

ratios model. 

Rio Grande (Table A-14) 

1. The empirical means match the corresponding values given by Reese and 

Krzysztofowicz. 

2.  and  are the two most strongly correlated ratios. 2y 4y

3. The sign of  is not preserved under the independent ratios model. ),(corr 64 xx

4. The sign of  is preserved under the dependent ratios model, but the sign of 

 is no longer preserved.  

),(corr 64 xx

),(corr 54 xx
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5. Neither  nor  is statistically significant at the 0.05 level under the 

t-test described above. 

),(corr 54 xx ),(corr 64 xx

6. The Euclidean distance between the empirical correlations and the dependent ratios 

model is less than the distance between the empirical correlations and the independent 

ratios model. 

Most of the analysis presented in this chapter is distribution-free. However, Reese and 

Krzysztofowicz hypothesized that each ratio  is beta distributed. They used the  

Kolmogorov-Smirnov test to check this hypothesis for the ratios of all rivers. They stated 

that "In 49 out of 51 tests, the beta distributions could not be rejected at a significance level 

of 0.20", and that "the beta distribution seems to be a remarkably versatile model of ratios, 

having a strong empirical support." Therefore, we now assume that the  are beta 

distributed, and use Frank's copula to illustrate the dependent ratios model for the Humboldt 

river. Using trial and error, we estimated the strength-of-dependence parameter δ  appearing 

in equation (8.12). With , the model covariance of  is equal to 0.0103, while 

the empirical covariance of  is equal to 0.0109. Therefore, 

yi

yi

01.0=δ ),( 21 yy

),( 21 yy δ =0.01 appears to be a 

reasonable value for this parameter. The Figure below shows the resulting joint distribution 

for  and . 1y 2y
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8.6 Discussion 
 

To summarize, we applied two models, the adaptive Dirichlet distribution with 

independent ratios (i.e., Krzysztofowicz  and Reese's model) and the adaptive Dirichlet 

distribution with dependent ratios (i.e., our model) to data on snowmelt runoff. In particular, 

we reanalyzed monthly runoff data for 14 western United States rivers. We were interested 

particularly in the fraction of total annual runoff occurring in each month. In describing 

snowmelt runoff patterns ),...,( 11 wwww n+ , Reese and Krzysztofowicz (1991) found that 

the correlations among these fractions were a reasonable way to characterize the seasonal 

patterns at particular rivers.  

Our model seems to performs "better" for all of those rivers, at least as measured by 

Euclidean distance. In particular, for all rivers, the Euclidean distance between the empirical 

correlations and those of a suitably chosen dependent ratios model is less than the distance 

between the empirical correlations and those of independent ratios model. We compared the 

means, variances, and correlation matrices obtained from the two models. Through this 

comparison, we found that our model preserves the empirical correlation sign structures for 

most of the 14 rivers. For the Gila, Sevier, Verde, Little Colorado, Yellowstone, Payette, and 

Rio Grande Rivers, the sign structure of the correlation matrix is not preserved by the 

independent ratios model. Unfortunately, our model is still not able to preserve the 

correlation sign structures of these rivers. However, in some cases (such as the Sevier and 

Yellowstone rivers), the number of unpreserved signs is reduced by a suitably chosen 

dependent ratios model. Also, none of the correlations whose signs are not preserved is 

statistically significant at the 0.05 level.  
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It is interesting to note that in some cases, the Euclidean distance between the empirical 

correlations and the dependent ratios model with the most strongly correlated ratios is 

actually larger than the Euclidean distance for the dependent ratios model with less strongly 

correlated ratios. This is illustrated in table 3 for the Boise River, and in table 10 for the 

Sevier River. Therefore, care must be taken in fitting the adaptive Dirichlet distribution with 

dependent ratios to observed data. 

Over all, the adaptive Dirichlet distribution with dependent ratios (i.e., our model) 

appears to be an improvement over the adaptive Dirichlet distribution with independent 

ratios for two reasons: 1) for all rivers, the Euclidean distance achievable between the 

empirical correlations and a suitable dependent ratios model is less than the distance between 

the empirical correlations and the independent ratios model; and 2) as shown in chapter 5, the 

adaptive Dirichlet distribution with dependent ratios has a much broader range of correlation 

sign structures than the independent ratios model. However, this added flexibility appears to 

be of limited value in this particular case study, since when correlation signs were not 

preserved under the independent ratios model, they were also not preserved under the 

corresponding dependent ratios model(s). 

 

 

 

 

 

 
Table 1. River gauging stations analyzed by Reese and Krzysztofowicz. 
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Gauging Station Runoff  

Season 
Length of 

Record 
Time Period 

Boise River near Twin Springs, Idaho April-July 35 1951-1985 
Weiser River near Weiser, Idaho  April-July 35 1951-1985 
Little Truckee River above Boca 
Reservoir, California       

April-July 28 1958-1985 

Gila River at Calva, Arizona                   February-May 25 1961-1985 
Salmon River at Salmon, Idaho               April-July 35 1951-1985 
Falls River near Squirrel, Idaho  April-July 35 1951-1985 
Humboldt River at Palisade, Nevada      April-July 28 1958-1987 
Sevier River at Hatch, Utah                    April-July 58 1915-1984 
Verde River above Horseshoe Dam, 
Arizona 

January-May 47 1939-1985 
 

Salt River near Roosevelt, Arizona  January-May 73 1913-1985 
Little Colorado River above                   
Lyman Lake, Arizona 

February -June 46 1941-1986 

Yellowstone River at Billings, 
Montana  

April-September 57 1929-1985 

Payette River near Horseshoe,  
Bend, Idaho 

April-September 33 1953-1985 

Rio Grande River near Del Norte, 
Colorado 

April-September 27 1958-1985 

 
Table 2. Topologies and permutations of fractions chosen by Reese and Krzysztofowicz. 

River Name  Bifurcation Topology Permutation of Fractions 
Boise  1-3 (2,1,3,4) 
Weiser  1-3 (2,1,3,4) 
Little Truckee  1-3 (2,1,3,4) 
Gila  1-3 (1,2,3,4) 
Salmon  2-2 (1,2,3,4) 
Falls  2-2 (1,2,3,4) 
Humboldt  2-2 (1,2,3,4) 
Sevier  2-2 (1,2,3,4) 
Verde  1-4(1-3) (4,3,2,5,1) 
Salt  1-4(1-3) (1,2,3,4,5) 
Little Colorado  2-3 (4,5,3,1,2) 
Yellowstone  2-4(1-3) (1,2,3,6,4,5) 
Payette  2-4(2-2) (1,2,3,4,5,6) 
Rio Grande  2-4(2-2) (3,4,5,6,1,2) 

 


