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CHAPTER 2 
 

Compositional Data  
 

 
2.1 Introduction 
 

A compositional data set is a set of vectors ( ), where x  for all i and   x x n1,..., +1 i ≥ 0
 

x x n1 1 1+ + =+... .  (2.1) 
 

Compositional data arises in many fields, so it is clearly important to have valid methods of 

analyzing such data. Unfortunately, the unit-sum constraint (2.1) is sometimes just ignored in 

practice (Aitchison, 1986). In other cases, the Dirichlet distribution is used to model 

compositional data, even when the conditional independence properties of the Dirichlet are 

not appropriate to the data-generating process. Either of these problems can lead to results of 

questionable validity. 

This chapter introduces some examples of compositional data in section 2.2, and presents 

some relevant background concepts from Smith (1994) in section 2.3 to 2.6. One should note 

that the terms "simplex" and "unit simplex" will be used equivalently in this work. Also, the 

term "fraction" will be used equivalently with "proportion." 

 
2.2  Examples of compositional data 

 
Compositional data arise naturally in many areas of science. For example, Aitchison 

(1986) mentions chemistry, geology, biology, ecology, hydrology, manufacturing design, 

medicine, and economics. Some examples will be given below. 

 

Example 2.1 ( Reliability systems ) 
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A Bernoulli system is a coherent system made up of components, each of which can 

either succeed or fail according to a Bernoulli process. (e.g., a k-out-of-N system that 

operates if and only if at least k of its N components operate successfully, for k >1). See 

Azaiez (1993) for more rigorous definition. 

Let  

Ω = = ∈ ∀ ={ ( ,..., )| { , } ,2,..., }ω ω ω ω1 0 1 1N i i N   (2.2) 
 

be the set of all attainable N-dimensional binary vectors,  
 
Eω  be the event that, for all i,  component i fails if  ω i = 0  and succeeds if  , for ω i = 1 ω  in 

, and Ω

x ω  be the probability of event , for any Eω ω  in Ω . 
 
From the above we have: 

                                           x ω
ω∈
∑ =
Ω

1 (2.3) 

 
So, the set { |  is a composition. Also, the system failure probability is given by  }x ω ω ∈Ω

 
Pf x= ∑

∈
ω

ω Ψ
, (2.4) 

 
where  is the set of states that cause the system to fail. Ψ Ω⊂
 

We are interested in finding  joint prior distributions for { | }x ω ω ∈Ω  so that the posterior 

system failure probability (i.e., the posterior distribution of ) obtained by updating this 

prior with data on the occurrences of the various system states is the same as if we instead 

used system-level success and failure data. This property has been described as "perfect 

aggregation" (Azaiez, 1993). A full discussion of this problem will be given in chapter 7. 

Pf

 
Example 2.2 (Diagnosis problem) 
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Consider two serious illnesses of the lungs, pneumonia and emphysema. These two 

illnesses may be alternative ways of accounting for some of the same symptoms. In this 

context the "ratios" may be quantities such as the conditional probability that a patient with 

particular symptoms has emphysema, given that the patient does or does not have 

pneumonia. Since these are conditional probabilities for the same event under somewhat 

different conditions, it is clear that they might be correlated. Because of that, it seems likely 

that none of the existing simplex distributions can adequately model this kind of problem.  

Example 2.3 (Segmented market) 

Markets will in general have multiple brands of the same product, each one competing to 

maximize its market share. Since the total of all market shares must equal 1, modeling 

market shares may entail the use of a suitable simplex distribution. 

Moreover, markets may contain several submarkets (e.g., premium, regular, and economy 

versions of the same product), with products competing primarily against others in the same 

submarket (Day et al., 1979). In this case, the Dirichlet distribution would clearly not be an 

adequate model for market shares. For further discussion of the complexities that can arise 

(e.g., overlapping submarkets), see Arabie et al. (1981), Srivastava et al. (1984), and Queen 

et al. (1994). 

 
2.3 The sample space and terminology 
 

As mentioned earlier, compositional data are constrained data. Suppose that a 

composition has n+1 elements. If n of the elements of that composition are known, then one 

can determine the last element. Thus, a composition with n+1 elements is referred to as an  n-
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dimensional composition. The sample space for an  n-dimensional composition is the n-

dimensional simplex, defined by  

S x x x x x xn
n n= > > + +{( ,..., ): ,..., ; ... }.1 1 10 0 n <1

x n

ℜ+

 
 

If  x , then will be called the  fill-up value. ∈S n x xn+ = − − −1 11 L

 
Such data frequently arise by normalizing data on the positive orthant 
 

ℜ = > >+
+

+ +
n

n nz z z z1
1 1 1 10 0{( ,..., ): ,..., }. 

 
Let z . A compositional vector x= ∈+

+( , ..., )z z n
n

1 1
1 = ( ,..., )x x n1  can be formed by letting 

 

x= ),,...,( 1

t
z

t
z n  where  ∑ +

=
=

1

1

n

i izt . 

 
We will use the term "basis" to refer to the vector z, and the term "size" to refer to the 

quantity t. The compositional operator C will be defined as  

 C(z)= ( , ..., ).z
z

z
zii

n
n

ii
n

1

1
1

1
1

=
+

=
+∑ ∑

 

 
It is important to note the one-to-one transformation between the basis space  and the 

size-composition space ; i.e., any basis can be uniquely specified by the 

corresponding size and composition, and conversely. 

ℜ +n 1

ℜ ×+
1 S n

 
2.4  Amalgamations and subcompositions 
 

A three-dimensional graph can be used to represent a composition consisting of three 

elements. However, in representing higher-dimensional compositional data, it may be 

desirable to decrease its dimensionality while retaining the unit-sum constraint. For further 

motivation, consider the following. 
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Suppose that there exists a composition x , but that we are interested in only a subset 

of the elements. This is typical in compositional data analysis; for example, in example 2.1, 

we are interested in estimating the failure probability of the system, which is the sum of a 

subset of the elements of that composition. This example motivates the following definitions. 

∈S n

Definition 2.1 Let  x = , and  let 1( ,..., )x x Sn
n

1 ∈ 1 2≤ < < < ≤n n n nkL . Then the vector  

 is said to be a (k-1)-dimensional amalgamation of  x if  t = ( , , )t t t k1 2 L

t x x t x x t x xn n n k nk1 1 2 1 11 1 2
= + + = + + n 1= + ++ +L L L, , , +L

x n

. 

Definition 2.2 Let  x = ( , , and  let x x..., )x x n1 ∈S n
n+ = − − ⋅⋅ ⋅ −1 11 . Consider the 

subvector  z=  where k<n+1, i  is some integer ∈{1,...,n+1} for all 

, and i  for all  j ≠r. Then the vector 

( , , ..., )x x xi i i k1 2 j

j k∈{ ,..., }1 ij ≠ r

s = C(z) 

is called a (k-1)-dimensional subcomposition of  x. 
 
Definition 2.3 Let 0 10 1 2 1= < < < < < = ++a a a a a nk kL , x= , 

, and , where t x

( ,..., )x x n1 ∈S n

x xn n+ = − − ⋅⋅ ⋅ −1 11 x ),,( 121 += kttt Lt xi a ai i
= + +

− +1 1 L ,  for  i = 1,2, ,L k +1 . 

Then the set , where s},,,,{ 1+k21 tsss L =i C( , for),,11 ii aa xx L+−
i k= +1,2, ,L 1, is said to 

form a partition of order k. 

 
 
 
 
2.5 The Dirichlet distribution 
 

The Dirichlet distribution is the most familiar of the simplex distributions. In this section, 

we will define the Dirichlet distribution, give some related theorems by Mosimann (1962), 
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and discuss some properties of this distribution that make it appropriate only for modeling 

compositional vectors that exhibit forms of extreme independence as well as negative 

covariance. 

Definition 2.4 The random vector y∈S n ,  is said to have a Dirichlet distribution if its 

density function is given by  

g y y
y

n
ii

n
i

i

( ,..., ) ( )
( )

*
1

1

1

1
= ∏

−

=

+
Γ

Γ
α

α

α

, 

 
where α α  and * , .= ∑ = − − −=

+
+ii

n
n ny y1

1
1 11 .. y α i i n> = +0 1,..., 1 . 

 
As noted by Fang et al. (1990), if α = +( ,..., , )α α α1 n n 1

i

n

1

 is the parameter vector of a Dirichlet 

distribution, then this distribution can be represented either as a distribution on the 

hyperplane  in . (In which case we write 

y  on H ), or as a distribution inside the simplex  in  written 

y  on S .  

H y y y yn n n i
n

+ + =
+= ∑ =1 1 1 1
1 1{( ,..., , )| } ℜ+

+n 1

~ (D n+1 α) n+1 S n ℜ+
n

~ ( ,..., ; )D n nα α α1 1+
n

Mosimann (1962) gives the following two theorems regarding the Dirichlet distribution:  
 
Theorem 2.1 Let  be independently distributed gamma random variables with 

location parameters α  and equal scale parameters. Then the composition formed from this 

basis has a Dirichlet distribution that is independent of its size. 

z z z n1 2, , ..., +

i

 
Theorem 2.2 Let  be a set of independent variables. Then t  and  

y

z z z n1 2 1, , ..., + z ii
n= ∑ =
+
1
1

= ( , ..., )z t z tn1  are independent if and only if the z  have gamma distributions with the 

same scale parameters.  

i
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This is a generalization of a result due to Lukacs (1955) for the two-dimensional case. 

Note, however, composition of a basis can be Dirichlet distributed and independent of the 

size even if the elements of the basis are dependent, as pointed out by Smith (1994). Such 

basis have so-called Liouville distributions (Fang et al., 1990), which will be discussed later 

in this dissertation. 

As stated above, the Dirichlet distribution has two properties that make it a poor 

distribution for modeling compositional data (Fang et al., 1990). First, the covariances are 

strictly negative. In particular, if y∈S n  have a Dirichlet distribution, then we have  

cov( , )
( ) (

y yi j
i j

i j i j

=
)

−

+ + +

α α

α α α α2 1
   for all . i j≠

 
Because of the unit-sum constraint given in (2.1), compositional data will often tend to be 

negatively correlated, but some data sets can nonetheless exhibit positive correlations 

between particular variables (see for example Reese and Krzysztofowicz, 1991). Thus, to 

model compositional data successfully, distributions on the simplex should be able to model 

both positive and negative covariance. 

Second, the Dirichlet distribution has very strong conditional independence assumptions. 

In particular, if y∈  has a Dirichlet distribution and { is a partition of order 

k-1 as in definition 2.3, then {  is an independent set. This result is 

independent of how the  are ordered, where 

S n }

}

1

2 ks s s t1, , , ,L

2 ks s s t1, , , ,L

y y n1, ,L + y yn+ = −1 11  . Hence, the 

Dirichlet distribution has very strong independence properties. Aitchison (1982) goes so far 

as to say that "the Dirichlet class has so much independence structure built into its definition 

that it represents not a convenient modeling class for compositional data but the ultimate in 

− −L y n
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independence hypothesis." Thus, to improve on the Dirichlet, a successful simplex 

distribution should have more general correlation structures and weaker independence 

properties, as stated in chapter 1. 

 
2.6 Dependence and independence concepts 
 

Surprisingly, since compositional data arise very frequently in practice, Aitchison (1982) 

was the first to systematically define and study alternative forms of independence for 

distributions on the simplex. More recently, Smith (1994) in his Ph.D.  thesis examined 

various concepts of independence that have been proposed for compositional data. In this 

section, some of the independence concepts that have been proposed to date will be 

summarized. 

Aitchison (1986) stated that  for compositional data, "there must be at least one negative 

element on each row of the crude covariance matrix."  He proved that as follows. Let  

x= , and let x x( ,..., )x x Sn
n

1 ∈ xn n+ = − − ⋅⋅ ⋅ −1 11 . Since  we must have  ,0),cov( 1
1 =∑ +
=

n
j ji xx

)var(),cov( i
ij

ji xxx −=∑
≠

 (2.5) 

 
Clearly the right-hand side of (2.5) can never be positive, so there must be at least one 

negative covariance on the left-hand side. 

 
Due to the unit-sum constraint on compositional data, its correlation structure is difficult 

to interpret. This also makes the usual concept of independence meaningless; the elements of 

a composition absolutely cannot be independent, since their sum must equal one. 
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Realizing this, Aitchison (1982) suggested looking at dependence among subcompo-

sitions and amalgamations. Let x = , and suppose that we are interested in 

breaking x into two parts: x 1 1 ; and x . A partition of 

order one  would consist of the set { , , where 

( ,..., )x x Sn
n

1 ∈

= ( ,..., )x x d 2 1 11= − ∑+ =( ,..., ,x x xd n i
n )i

, }s s1 2 t s1
1

1

1

1

=
∑ ∑

⎛
⎝
⎜

⎞
⎠
⎟

=

−

=

x
x

x
xii

d
d

ii
d, ..., ,  

s 2
1

1 11 1
=

− ∑ − ∑
⎛
⎝
⎜

⎞
⎠
⎟+

= =

x
x

x
x

d

ii
d

n

ii
d, ..., , and t x . ii

d= ∑ =1

 
Taking  to mean "statistically independent," Aitchison (1982, 1986) defines the 

following independence concepts for a partition of order 1:  

⊥

 
1) Partition independence   mutually independent ( , , )s s1 2 t

2) Subcompositional invariance ( , )s s1 2 ⊥ t  

3) Right neutrality ( , )s1 t ⊥ s 2  

4) Left neutrality s s1 2⊥ ( , )t  

5) First subcompositional invariance s1⊥ t  

6) Second subcompositional invariance s 2⊥ t  

7) Subcompositional independence s s1 2⊥  

 Note that any partition of order 1 from the Dirichlet distribution satisfies all of these 

forms of independence. Smith (1994) points out several obvious relationships among 

these concepts: 

i) (1) ⇒ (2), (3), and (4). 

ii) (4) ⇒ (5) and (7). 
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iii) (3) ⇒ (6) and (7). 

iv) (2) ⇒ (5) and (6). 

Connor and Mosimann (1969) say that  is neutral with respect to  if  xx j x i j ⊥
x

x
i

j1−
. 

They also give a vector generalization of this definition. For instance, let  be a 

random vector on . Then  is said to be neutral with respect to (  if  x

),...,( 1 nxx

S n x1 ,..., )x x n2 1 ⊥  

( , ,...,x
x

x
x

x
x
n2

1

3

1 11 1 1− − −
)

)n

. Similarly, ( ,  is said to be neutral with respect to 

 if ( ,

..., )x xd1

( ,...,x xd+1 ..., )x xd1 ⊥ ( ,...,x
x x

x
x x

d

d

n

d

+

− − ⋅ ⋅ ⋅ − − − ⋅ ⋅ ⋅ −
1

1 11 1
) . Finally, Connor and 

Mosimann say that a compositional vector  has complete neutrality if and only if  ( ,..., )x x n1

 

x1 ⊥ ( ,...,x
x

x
x
n2

1 11 1− −
)  

 

        ( , )x x1 2 ⊥ ( ,..., )x
x x

x
x x

n3

1 2 1 21 1− − − −
 

 
M  

( ,..., )x x n1 1− ⊥
x

x x
n

n1 1 1− − ⋅ ⋅ ⋅ − −

. 

 
Smith (1994)  noted that, since ( ,  is equivalent to ( ,  and ..., )x xd1 )s1 t

( ,x
x x

d

d

+

− − ⋅ ⋅ ⋅ −
1

11
... , )x

x x
n

d1 1− − ⋅ ⋅ ⋅ −
s 2

)n

 is , then neutrality of ( ,  with respect to 

 is equivalent to right neutrality; i.e., Connor and Mosimann's concept of 

neutrality is equivalent to Aitchison's concept of right neutrality. Thus, Smith refers to 

Connor and Mosimann's concept of complete neutrality as complete right neutrality. 

..., )x xd1

( ,...,x xd+1
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Connor and Mosimann introduce complete neutrality as an  analogy to complete 

independence in unconstrained data. The analogy is not perfect, however, since a 

composition can be completely neutral for some permutations of its elements but not others. 

Because of this, extreme neutrality defined below as a neutrality concept that does not 

depend on order.  

 
A compositional data set is said to have extreme neutrality if it has complete neutrality for 

any permutation of its elements. This form of independence has been frequently discussed, 

but was apparently not given a name in the literature until Smith (1994). According to 

Connor and Mosimann (1969), W. Kruskal showed that extreme neutrality is essentially 

equivalent to the Dirichlet distribution. Kruskal apparently never published his proof, but 

Smith (1994) proved this property using published results. 

 
As stated earlier, Connor and Mosimann's concept of neutrality is equivalent to 

Aitchison's concept of right neutrality, and Smith (1994) refers to complete neutrality as 

complete right neutrality. Aitchison (1986) expands the list of complete independence 

concepts to include complete partition independence, complete left neutrality, complete 

subcompositional invariance, complete subcompositional independence, complete first 

subcompositional invariance, and complete second subcompositional invariance, as follows: 

Consider an n-dimensional composition x. The partition at level c of x is simply the partition 

of order 1 formed from the single division . Then let ),,;,,( 111 ++ ncc xxxx LL Ι  be an 

independence property, such as right  neutrality or subcompositional invariance, associated 

with a partition of order 1. Let Ι k  denote the presence of that independence property for a 
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partition of order 1 at level k. Then the composition x is said to have independence property I 

up to level c, written , if   holds for k=1,....,c. The composition x is said to have the 

complete independence property 

Ιc Ι k

Ι  if  Ι k  holds for partitions at all possible levels; i.e., if the 

composition x has independence property Ιn+1 . 

 
Smith (1994) notes that complete subcompositional independence has been inconsistently 

defined in the literature, so he uses the term "extreme subcompositional independence" to 

refer to the stronger form of Aitchison's "subcompositional independence" (Aitchison, 1986, 

p. 235-236). Thus, in Smith's terminology, a compositional vector is said to have "extreme 

subcompositional independence" if the subcompositions  formed from a 

partition of any order 1, 2, 3,...,etc. form an independent set. I would note that Smith used the 

term "extreme" in his definition of "extreme neutrality" to mean that a compositional vector 

set has complete neutrality for any permutation of its elements. However, he later used 

"extreme" in the definition of "extreme subcompositional independence" to mean that the 

subcompositions  formed from a partition of any order (1, 2, 3,...,etc.) 

constitute an independent set. Note that "extreme subcompositional independence" is defined 

for a particular permutation. Thus, the term "extreme" is used in two different senses. A 

suggested change in terminology to avoid this problem will be proposed in the next section. 

{ s s s1 2 k+ 1, ,... , }

}{ s s s1 2 k+ 1, ,... ,

 
 
The Dirichlet distribution has every form of independence that has been defined in this 

section, and in fact Aitchison (1982) calls the Dirichlet distribution "the ultimate in 

independence hypothesis." Moreover, since extreme neutrality is achieved only by the 
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Dirichlet distribution, extreme neutrality is in some sense the strongest possible 

independence concept for compositional data. 

 
We now introduce an independence concept that involves both the basis and its resulting 

composition. In fact, since a basis completely determines both its composition and its size it 

is natural to ask whether the size of the basis and the composition are independent. Aitchison 

(1986) says that a basis has compositional invariance if this property holds. Note from 

theorems (2.1) and (2.2) above that if z is an (n+1)-element basis and  z i , i n= +1 1,..., , are 

independent gamma random variables with equal scale parameters, then z has compositional 

invariance. Furthermore, the composition x=C(z) has a Dirichlet distribution in this case. 

 
2.7 Some new independence concepts 
 

From the above discussion, one should note that all of the independence concepts 

discussed here have been defined for a partition of order one, except for extreme 

subcompositional independence, which was defined for a partition of any order (1, 2, 

3,...,etc.). These concepts are used as measures of independence for compositional data. 

Thus, one interesting question is whether it is beneficial in applications to extend the 

independence concepts to  partitions of  higher order. In what follows, we extend some 

concepts of independence to partitions of higher order, and also propose some new 

terminology. 

Throughout this section we will use the term "complete" to denote independence at any 

possible level for a specific permutation, while the term "extreme" will be used to denote 

complete independence for any permutation. 



 28
Consider a partition of order k of the compositional vector x∈  as in 

definition 2.3. We say that a compositional vector x has complete k-partition independence if 

 is an independent set of vectors for a particular permutation of the 

composition x, but for partitions of any order up to and including k. Analogous to the 

definition of extreme neutrality, we will say that a compositional vector x has extreme k-

partition independence if it has complete k-partition independence for any permutation of its 

elements, with "extreme" denoting any permutation, and "k" denoting a partition of any order 

up to and including . 

}{ tsss ,,...,, 1+k21 S n

}{ tsss ,,...,, 1+k21

k

From section 2.5, we know that if x has a Dirichlet distribution, then { }  

will be an independent set of vectors for any 

s s s t1 2 k+ 1, ,... , ,

k n∈{ ,2,..., }1 , regardless of how the elements 

of x are ordered. This form of independence has been frequently discussed, but was 

apparently not given a name in the literature. The above definition suggests extreme n-

partition independence as a name for this independence concept. Note that if a compositional 

vector x has complete (extreme) k-partition independence, then it must have complete 

(extreme) r-partition independence for any r k≤ . By convention, complete 1-partition 

independence is equivalent to complete partition independence; in general, if a prefix is not 

affixed to an independence concept, then it should be understood that we are talking about a 

partition of order one. 

Similarly, we say that a compositional vector has complete k-subcompositional 

independence if the subcompositions  is an independent set of vectors for a 

particular permutation of the composition x, but for partitions of any order up to and 

including k. Also, we will say that a compositional vector x has extreme k-subcompositional 

}{ 1+k21 ,...,, sss
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independence if it has complete k-subcompositional independence for any permutation of its 

elements. 

Note that if k=n, we get complete n-subcompositional independence, which is equivalent to 

what Smith (1994) inconsistently called extreme subcompositional independence (the 

Aitchison's stronger form of "subcompositional independence"). Thus, throughout this thesis 

complete n-subcompositional independence will be used to refer to Aitchison's stronger form 

of "subcompositional independence". Once again, by convention, complete 1-

subcompositional independence is equivalent to complete subcompositional independence. 

It is clear from the above that subcompositional independence and partition independence 

have now been defined for higher-order partitions, the first by  Aitchison (1986), and the 

second one in this dissertation. Analogous to that, could one do the same thing for other 

independence concepts? Are such extensions beneficial? Have such generalized 

independence concepts been discussed in the literature? The answers to these questions are 

left for the interested researcher. 

 


