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Chapter 1 
 

Introduction, background, and overview 
 

1.1 Introduction 
 

 Non-negative multivariate  data  that satisfy a unit-sum constraint are known as 

compositional data. Historically, lacking good methods for analyzing such data, the unit-sum 

constraint was often simply disregarded. However, since the relevant sample space is the 

positive unit simplex, this type of data could be analyzed parametrically by adopting an 

appropriate distribution on the positive simplex.  

 
Usually, compositional data results from normalizing data whose sample space is the 

positive orthant, 
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Following the standard terminology, we will use the term "basis" to refer to the vector z, and 

the term "size" to refer to the quantity t.  As can be clearly seen, a basis is uniquely specified 

by the corresponding size and composition, and conversely. 

Compositional data arise in many fields; for example, Aitchison (1986) mentions 

chemistry, geology, biology, medicine, ecology, hydrology, manufacturing design, and 

economics. As a simple illustration, Leser (1963) divides U.S. farmers' expenditures into 

twelve categories, including food, tobacco, home maintenance, etc., and finds the proportion 
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of each farmer's income spent on each of these categories. More examples will be given in 

chapter 2.  

The correct statistical analysis is critically important for compositional data. Aitchison 

(1986) was the first to systematically consider alternatives to the Dirichlet distribution, which 

he felt was insufficient to model most compositional data  sets, due to its inability to model 

positive correlations and its strong conditional independence assumptions. These two 

inadequacies caused us to think about extending this distribution. Also, they give some 

criteria that a "good" simplex distribution must possess.  

Knowing these inadequacies, Aitchison developed an alternate model. In his approach, 

the original n variables in the composition ( ,  are mapped to  through the use of a 

log-ratio transformation. The n transformed variables are then modeled as multivariate 

normal, and the needed multivariate analyses are performed in . Aitchison noted that the 

resulting logistic normal class unfortunately does not  contain the Dirichlet distribution as a 

special case. That is, this class does not produce densities with extreme independence 

properties. Aitchison suggested two possible ways to address this problem. One is to 

transform the original data from the simplex to  and look for extensions to the logistic 

normal class that can model extreme independence. The other is to stay on the simplex and 

look for a new family of distributions that contains the Dirichlet but also contains 

distributions capable of modeling nontrivial dependence structures.  
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In this dissertation, we adopt the latter approach. Also, we consider additional criteria 

that a "good" simplex distribution must possess. Generally speaking, one would like a 

simplex distribution that has the following properties: 
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 1) the ability to model both positive and negative covariance; 
 
2) little or no restriction on the structure of the covariance matrix (beyond of 

course the requirement that it be non-negative definite); 

 
3) a less severe independence structure than the Dirichlet distribution; 
 
4) a clear method of  estimating its parameters from the available data; 
 
5) the property that compositions with this distribution also have subcompo-

sitions with this distribution; 

 
6) tractability of its moments as well as its normalizing constant;  
 
and 
 
7) invariance with respect to what Aitchison (1986) called the "fill-up value," 

. In other words, if two analysts use the same simplex distribution to 

model the same compositional data set, but choose different variables to be the 

fill-up value, then they should reach the same inferences regardless of their 

choice of fill-up value. 
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Also, for Bayesian analysis one would ideally like the distribution to be: 
  
8) closed under multinomial sampling; i.e., a conjugate prior family for mul-

tinomial sampling. 

 
Properties 1 and 3 resulted from the comments given by Aitchison about the Dirichlet 

distribution. Properties 5 and 7 are suggested by Smith (1994). Properties 2, 4, 6, and 8 are 

our own criteria. 
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One should note that a "good" simplex distribution is relative; i.e., what is good for one 

application may not be good for another. For example, insensitivity to the choice of fill-up 

value is important if the underlying variables are symmetric or exchangeable, but reduces the 

flexibility of the distribution in cases where symmetry is not desirable. Thus, some of these 

criteria may be desirable for one application and not for another. 

James (1981) commented that there were few tractable distributions for random 

proportions other than the Dirichlet. Aitchison (1986) similarly commented that "attempts to 

obtain a suitably rich class of distributions containing the simple Dirichlet class have so far 

failed." Fang et al. (1990) stated that "In analysing so-called 'compositional data,' scientists 

have been handicapped by the lack of known distributions to describe various patterns of 

variability." Hutchinson and Lai (1991) stated that with the work of Aitchison (1986), "this 

whole field has received new impetus and is likely to see productive interaction of data with 

theory over the next few years." Rayens and Srinivasan (1994) gave a generalization to the 

Liouville family on the unit simplex and noted, "It appears that no one has investigated the 

extent to which this family addresses Aitchison's challenge to find a family that contains the 

Dirichlet but also contains densities with sophisticated dependence structures." Later in 

chapter 4 we will see that this generalized Liouville distribution is still inadequate because it 

is difficult to construct a generalized Liouville distribution on the simplex with a desired 

covariance structure, and it can not model some independence concepts. In addition, it is not 

clear how one could estimate the large number of parameters in its density function. Joe 

(1997) provided an extensive discussion of non-normal multivariate models, including 

models based on mixtures, latent variables, and stochastic representations. He commented 
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that "Until recently, little research had been done in the area of multivariate non-normal 

distributions." 

Motivated by the above comments, one of our concerns in this work is to identify a 

family of distributions that contains the Dirichlet but also contains distributions capable of 

modeling nontrivial dependence structures, as well as satisfying some of the criteria given 

above. Specifically, we generalize the approach suggested by Krzysztofowicz and Reese 

(1993) (which will be discussed later) through the use of dependent ratios (rather than 

independent ratios, as used in their work). In addition, we also develop new families of 

distributions on the positive orthant  that encompass as special cases the Liouville, 

conditional generalized Liouville, adaptive Dirichlet, and multiple Dickey distributions. We 

then use some of these new distributions in applications. The availability of methods to 

estimate the models’ parameters in terms of the original composition and its covariance 

structure is one of the advantages of our new distributions. In addition, in some applications 

our new models appear to resolve problems where the models originally used by other 

investigators were not satisfactory. 

n
+ℜ

 
1.2 Background 

 
Connor and Mosimann (1969) proposed a generalization of the Dirichlet distribution. 

However, Aitchison (1986) noted that this generalization still had many independence 

properties. 

Dickey (1968) defined the so-called scaled Dirichlet distribution, which likewise has a 

strong conditional independence structure. Dickey (1983) further generalized this 
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distribution to the Dickey and multiple Dickey distributions, but it is unknown whether or 

not these distributions can admit positive covariance, as Smith (1994) noted. 

Barndorff-Nielsen and J∅rgensen (1991) derived new classes of parametric models on the 

unit simplex by conditioning independent generalized inverse Gaussian random variables on 

their sum. This class of distributions has the Dirichlet distribution as a special case. 

However, the developers pointed out that their models "do not yet provide a full alternative 

to the logistic normal distributions as far as statistical analysis of compositional data is 

concerned, principally because the latter family of distributions has m(m-1)/2 covariance 

parameters, whereas our distributions have only one variance, or rather precision, 

parameter." Thus, these distributions will presumably have rather limited covariance 

structures. Also, Smith (1994) noted that compositions with this distribution do not have 

subcompositions with the same distribution. Finally, it is not clear whether this class of 

distributions admits positive covariances. 

Grunwald, Raftery, and Guttorp (1993) developed two new distributions on the unit 

simplex, the Dirichlet conjugate distribution and the Dirichlet conjugate Dirichlet 

distribution. These are based on the Dirichlet distribution, but generalize it to allow for 

dependence between the proportions. They used these distributions to model the fractions of 

world automobile sales by Japan, the USA, and the rest of the world. They considered time 

series data, and focused on the proportions of total sales over time, rather than the actual 

amounts. Again, it is unclear whether these distributions satisfy the properties we have 

identified as being desirable. 
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Krzysztofowicz and Reese (1993) proposed the so-called adaptive Dirichlet (AD) 

distributions on the unit simplex. They presented a number of examples illustrating their 

approach, and showed that the Connor-Mosimann distribution can be derived as a special 

case of their models. As noted by its developers, "The family of distributions characterized 

herein constitutes the ultimate generalization of the Dirichlet distribution that can be 

obtained through an independent bifurcation process. This generalization does not totally 

relax the constraints on the correlation structure of fractions that the Connor-Mosimann and 

standard Dirichlet distributions impose. It nonetheless offers a much richer model of the 

stochastic dependence among fractions." Later in this dissertation, we will show the need to 

relax the independent bifurcation assumption considered by Krzysztofowicz and Reese, to 

come up with a new family of distributions with more general correlation structures than 

those imposed by the AD distributions. 

Smith (1994) examined numerous known distributions, to evaluate whether or not they 

could be considered good simplex distributions. He showed that Liouville distributions are 

able to model positive covariance, but have many of the same independence assumptions as 

the Dirichlet distribution. The generalized Liouville distributions of Rayens and Srinivasan 

(1994) again admit positive covariance and can model more general dependence structures, 

but are not invariant with respect to the choice of the fill-up value, one of Smith's criteria. 

Therefore, Smith proposed a new class of simplex distributions, the conditional generalized 

Liouville (CGL) distributions. Smith noted that the scaled Dirichlet distribution and Dickey 

distribution are conditional generalized Liouville distributions, while the multiple Dickey 

distribution is not. CGL distributions are invariant with respect to the choice of the fill-up 

value, admit positive covariance, and provide a fair degree of flexibility in being able to 
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model some forms of independence without others. However, it is currently difficult to 

construct either generalized Liouville or CGL distributions with specified covariance 

structures. In addition, it is not clear how to estimate the large number of parameters in the 

densities of those distributions.  

Gupta and Richards (1995) defined a class of distributions, containing the classical 

Dirichlet and Liouville distributions, in which the random variables are defined on a locally 

compact Abelian group or semigroup. They showed that this class has many properties of the 

Dirichlet and Liouville distributions, and discussed other properties of the marginal and 

conditional distributions. Gupta and Richards presented a number of examples illustrating the 

general theory, and showed that Barndorff-Nielsen's and J∅rgensen's model can be derived as 

a special case of their model. This work was mainly theoretical, and the authors did not give 

any application of their theory or test their distributions against the properties we have 

suggested as desirable. 

To summarize, there has been a great deal of interest in constructing new families of 

distributions to allow more general dependence structures on the unit simplex and on the 

positive orthant. Some researchers (e.g., Smith, 1994) were interested in this problem 

primarily from a mathematical point of view. Others (e.g., Krzysztofowicz and Reese, 1993) 

had real-world problems (in their case, modeling snowmelt runoff) that caused them to 

construct new models. In this work our primary interest is theoretical, but we also consider 

applications of our results to  two different real-world problems.  
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Figure 1.1 summarizes some of the existing extensions to the Dirichlet and Liouville 

distributions, which are also reviewed in Chapters 3 and 4. Figure 1.2 highlights the new 

extensions that we propose in Chapters 5, 6, and 7. 
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