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ii m
n α λn+ n=1 as we mentioned before.  

 
Similarly, to show necessity, assume that perfect aggregation holds with this prior. Then 

 must be factorable in to a function of and a function of  γ (theorem 7.2), 

which cannot be true unless condition (7.10) holds. One can see that by contradiction; i.e., by 

assuming that at least one of the
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Hence, within this class of distributions, condition (7.10) is necessary and sufficient for 

perfect aggregation to hold. 
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 Remark 7.2 
 
i) Wong (1996) proved that if the prior distribution of the system state probabilities is a 

Connor-Mosimann distribution CM n ( , )α λ , then condition (7.10) is necessary and sufficient 

for perfect aggregation to hold. However, comparing our approach to his, one can see the 

usefulness of theorem 7.2 as a means to discover easily whether a prior distribution satisfies 

the conditions for perfect aggregation, without the extensive algebra used in his approach. 

Our approach is also potantially applicable to a much wider class of distributions. 

 
ii) The joint density  h( P , γ) is given by f
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where α α . 1 1

* = ∑ = ii
m

 
iii) Note that the condition for perfect aggregation (ξi = 0 for i=1,..,m-1) that was given in 

(7.10) is related to Ψ, the set of failure states. So one may ask, is there a condition related to 

Ω ⁄ Ψ, the set of success states, such that perfect aggregation holds? The answer is yes. All 

we need is to change the order of the random variables representing the system probabilities, 

since in a generalized Dirichlet distribution this order is not arbitrary. For example, if we let 

 follow a generalized Dirichlet distribution with density function given 

by 

( , , ..., , )p p p pn n+1 2 1
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then the condition for perfect aggregation is λ α λn i n i n i i n+ − + − + − m= + = −2 1 1 1, ,2, ..., . 
 

Before proceeding to our third example, we first define the Aitchison distribution, 

),( BαnA  The definition of this class of distributions and the remark following it are due to 

Aitchison (1986, chapter 13).  
Definition 7.1 A random vector  is said to have the  distribution if x has 

probability density function 

x ∈S n ),( BαnA

 ),,|(  BαxAg defined by 

2

1

1

1

1

1
)]log()[log(

2
1)log()1(),( )] ,|(log[ ji

n

i

n

ij
ij

n

i
ii xxbxkg −−−α+= ∑ ∑∑

=

+

+=

+

=
BB ααxA , 

where the parameters α, B must satisfy either 

(a) α α  and positive definiteness of the matrix B,  α1 2 1 0+ + + ≥+... n

or  

(b) α  and non-negative definiteness of the matrix B. i i n> = +0 1( ,2, ... 1)

Remark 7.3 
 
If b i n j i nij = = = + +0 1 1( ,2,..., ; , ..., )1  and α i i n> = +0 1( ,2, ... 1) , then the Aitchison 

distribution reduces to the Dirichlet distribution. Also, the Aitchison distribution reduces to 

the additive logistic normal distribution when α α1 2+ +...  + =+α n 1 0 . 

Example 7.3 (Aitchison distribution,  ) ),( BαnA
 
Let the prior joint density g of P be as defined above. Then perfect aggregation 

holds for our model if  the b  satisfy the following condition: 

),( BαnA

ij
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                          b i m j m nij = = = + +0 1 1, ,..., , ,..., .1  (7.11) 
 
One can show this as in the previous examples (i.e., by using theorem 7.2), or see Aitchison 

(1986, p. 316). 

Note that the conditions for perfect aggregation are more general than the conditions under 

which the Aitchison distribution reduces to the Dirichlet. Thus, this result yields a new class 

of distributions that satisfies perfect aggregation. However, the usefulness of this class in 

practice is likely to be limited, since Aitchison speculates that the normalizing term k ( , )α B  

is not closed form except for the special cases of the Dirichlet and additive logistic normal 

distributions. 

Example 7.4 (CGL distribution ) 
 
If the prior joint density g(P)  is conditional generalized Liouville, as given in definition 4.4, 

then perfect aggregation holds for our model iff  β i = 1 for i=1,...n+1, , and  

. This can  be shown as in the previous examples (i.e., by using theorem 7.2), 

or see Smith (1994, theorem 9.2). 

q m1 = =... q

q n+1q m + = =1 ...

Note that before we gave specific definitions for P  and γ in terms of 

 and theorem 7.2, we had no means to discover easily whether the above 

priors satisfied perfect aggregation. As stated before, Hazen's result by itself is usually not 

helpful in verifying whether perfect aggregation holds for a particular choice of prior 

distribution. However, Hazen's result provided the basis for our result. 

f

P = ( , , ..., )p p pn1 2
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7.5.2 New distributions that satisfy perfect aggregation  
 

As stated in chapter 1 and section 3.4, one of our concerns in this work is to identify a 

family of distributions that contains the Dirichlet but also contains distributions capable of 

modeling nontrivial dependence structures and still satisfying perfect aggregation. We 

already developed some such distributions in chapters 5 and 6. In this section, we introduce 

some additional families of distributions that facilitate studying perfect aggregation. In 

particular, this section introduces two approaches for developing such families of 

distributions. Unfortunately, some of our new distributions are not analytically tractable. 

However, one can use Monte Carlo simulation or numerical integration to calculate moments 

and other performance measures.  

One approach for developing new families of distributions on the n-dimensional unit 

simplex is to assign a simplex distribution of lower dimensionality to each element of a 

partition of order 1 of the original n-dimensional vector. For example, let x = 

, and consider a partition of order one, { , , where ( ,..., )x x n1 ∈S n , }s s1 2 t

  ( )s1 1 1= −x t x td, ..., ,  ( )s 2 1 1 1= − −+x t xd n( ) ,..., ( )t x

d

, and t . (7.12) ii
d= ∑ =1

 
Note that s , and t S . Assume that and  are mutually 

independent (i.e., x possesses partition independence), and f

s1
1

2∈ ∈− −S Sd n, ∈ =1 01( , ) ,, 21 ss t

1, f2, and f3 are the densities of 

, and t, respectively. Then the density of x is of the form s s1 2,

g(x) = f1(s1) f2(s2) f3(t) J(( s s )→x) , (7.13) 1 2, ,t
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where J(( )→x) = is the Jacobian of the transformation 

( )→x (i.e., the inverse of the transformation given by (7.12)). To illustrate this 

approach, consider the following examples: 

s s1 2, ,t ( )x ii
d d
=

−∑ 1
1 (1 1− ∑ =

−x ii
d d n)

− −α α α s2 1 1~ ( ,..., ; )Dn d d n n− + +

s s1 2, ,t

α α α1) If s , 1 1 1 1~ ( ,..., ; )Dd d d , and   t B  

then we have x

e i
d

ii d
n~ ( , )α α11 1

1
= = +

+∑ ∑ ,

n~ ( , ......, ; )D n nα α α1 1+ . 

2) If , s1 1 1 1~ ( ,..., ; )Dd d− −α α αd s 2 1 1~ ( ,..., ; , ..., )CM n d d n d n− + +α α λ λ , and 

, then we have x~ CMt Be ii
d

d~ ( ,α λ=∑ 1 ) nn n( , ..., ; , ..., )α α λ λ1 1 , where λ α λi i i= ++1 1+  for 

. i d= −1 1,...,

3) For n=3 (i.e., x1+x2+x3+x4 = 1), if s1 1 1 2= +x x x( ) ~ Be ( , )α λ1 1 , s 2 3 3 4= +x x x( ) ~ 

, and t=xBe ( , )α λ3 3 1 +x2 ~ Be ( ,α )λ2 2 , then we have x . ~ (( )AD B
3 1 2 3 1 2 3α α α λ λ λ, ,, ; , ,2)

4) If s1 and s2 follow any simplex distributions, and t follows any distribution on (0,1), then 

we have a distribution for x on the unit simplex. For some choices of distributions for s1 and 

s2 (e.g., s1 ~ adaptive Dirichlet with dependent ratios and s2 ~ CGL), the results will establish 

new simplex distributions. 

The approach discussed here, as well as the specific definitions for  and γ in terms of 

 given in equations (7.7) and (7.8), will allow us to construct a large 

number of new prior distributions that satisfy the conditions of theorem 7.2 for perfect 

aggregation. For example, if states 1 through m in 

Pf

P = ( , , ..., )p p pn1 2

Ω  are the states in which the system fails,  

one could let ~ adaptive Dirichlet with dependent ratios and )/,...,/,/( 21 tptptp m

),...,( 1 tptp nm+ ~ CGL. 
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The idea above can be further generalized in one of two ways. First, one could start from 

the set { , ; i.e., a partition of order k instead of order 1. Alternatively, one 

could have a hierarchy of partitions. For example, if we have a partition of order one at level 

d (i.e., s , s , and t ), then we could partition s

, ..., ; }s s s t1 2 1k +

1
1∈ −S d

2 ∈
−S n d x ii

d= ∑ =1 1 and/or s2  again, and 

so on. One should note that those multiple Dickey distributions obtained from successively 

nested partitions form a subclass of the resulting new family (although multiple Dickey 

distributions obtained from overlapping sets are not included in our new family). Again, by 

suitable choice of the partitions, many distributions established using these approaches will 

satisfy perfect aggregation. 

We now present a second approach for developing new simplex distributions. The 

resulting new class of distributions contains as special cases the Dirichlet, Connor-

Mosimann, CGL, and multiple Dickey distributions. Note also that this family contains new 

distributions satisfying the conditions for perfect aggregation. 

Definition 7.2  is said to have a generalized multiple Dickey distribution, x ∈S n

),,,,;( CqβζαfGMDn  if x has density  
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where nn xxx −−−=+ L11 1 , , , α i > 0 0>iq 0>β i , ,ℜ∈ζ j  and c  for all i and j, 

L=1,2,…., and  is a positive continuous function such that 
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Remark 7.4 
 
(1) If , and  for all i,j , then we get the Dirichlet distribution. jii qq ==β ,1 1=ijc
 
(2) If   for all i,j, L=n-1, and jii qq ==β ,1 0=jkc , 1=ikc  for all  , 

, and if there exist 

,kj ≤ ki >

1,,1 −= nk L 0>λ i  such that 11 ++ λ−α−λ=ζ iiii , 1,,1 −= ni L , and 

, then we get the Connor-Mosimann distribution. 1+α=λ nn

(3) If L=1, ∑ +
= βα−=ζ 1
11 1 n

i ii , and ii qc 11 =  for all i, then we get the conditional 

generalized Liouville distribution. 

 (4) We cannot get either the Liouville or the generalized Liouville distributions on the unit 

simplex as special cases of this distribution. However, when β β1 1= = =L n , 

, and , then the conditional generalized Liouville distribution 

approaches the standard Liouville distribution as q

q q n1 1= = =L α n+ =1 1

n+ → ∞1 . 

 (5) If  and  for all i,j, then we get the multiple Dickey distribution. 1=βi ji qq =

 
(6) Perfect aggregation is achieved if 1=β i  for i=1,...,n+1, q q m1 = =... , , and 

each column of the matrix C  has one of the following forms: 

q qm n+ += =1 1...

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

t
jj

t
jjj

j

bb

ccc

c

m

m

),...,,0,...,0(

or

)0,...,0,,...,,(

*

321

43421

  for ,,...,1 Lj =  (7.15) 

 
where states 1 through m in Ω are the states in which the system fails. Note that these 

conditions are equivalent to the following new distribution that satisfies the conditions for 

perfect aggregation: 
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Figure 7.1 shows the relations between the Dirichlet, Connor-Mosimann, conditional 

generalized Liouville, multiple Dickey, and generalized multiple Dickey distributions. 

Distributions in the dashed region satisfy perfect aggregation. Thus, perfect aggregation is 

satisfied by some but not all multiple Dickey, Connor-Mosimann, and conditional 

generalized Liouville distributions.  

 
   
    
 
 
 
 
 
 
 
 
 
 
 
 

    P.A. 

                            CGL C.M. Dirchlet MD 

GMD 

 
Figure 7.1 Relationship among families of simplex distribution.  

                 DirCGLGMDMDMCDir ⊃⊃⊂⊂⊂ ..  and CMD I

 
7.6 Perfect aggregation for parallel Poisson sy
 

The results of the previous sections can be extended to p

systems constructed by placing a component that fails in a Pois

 in parallel with a Bernoulli system as defined in section 7.1. λ 0
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arallel Poisson systems (i.e., 

son manner with failure rate 
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For the parallel Poisson systems we will adopt Azaiez's assumptions (Azaiez, 1993), 

which are given below: 

1) The system is observed for a preassigned time. 

2) The Bernoulli system is taken to be stand-by or back-up for the Poisson component 

 and as such is not tested unless the Poisson component fails. 

3) As in section 7.2, it is assumed that we test all components of the Bernoulli system 

 simultaneously. 

4) Failure  of one  component or subsystem does not affect the failure  probability  of 

 any other component, or subsystem. 

Analogous to the reparametrization of the Bernoulli system discussed in section 7.4, the 

parameters of this model are defined as follows: 

 
Pλ λ= ( , )0 P , where P is defined as in section 7.4, 
 
λ λf i

m p= ∑ =0 1 i  (the system failure rate), and 
 

γ = ( , ,..., )γ γ γ1 2 n , where γ λ λ1 0= − f , γ λ
λi

i

f

p
+ =1

0  for i= 1,...,m-1, and γ λ
λ λi

i

f

p
=

−
0

0

 for  

i = m+1 ,...,n. 
 

Making the transformation P , which has  Jacobian T
fλ λ⎯ →⎯ ( , γ ) λ λ λ

λ
f

m
f

n m

n

− −−1
0

0

( ) , we 

can state the following theorems, which are analogous to theorems 7.1 and 7.2. The proofs 

are similar to the ones given for those theorems. 

Theorem 7.3 Perfect aggregation holds for this model iff λ f  and γ are independent. 
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Theorem 7.4 Perfect aggregation holds for this model if and only if  can be 

factored into a function of  and a function of  γ, where  is the prior joint density of P . 

λ λ0 0
−n g ( )P

λ f g 0 λ

For parallel Poisson systems defined above, Azaiez (1993) proved the following result: 
 
If  and λ 0 ~ (Gamma a b, ) nP ~ ( ,..., ; )D n nα α α1 1+  with , then perfect 

aggregation holds. 

a ii
n= ∑ =
+ α1
1

This is a generalization of a result due to Bier (1993) for a simple system consisting of a 

single Poisson component and a single Bernoulli component. Example 7.5  below generalizes 

Azaiez's result by allowing P to have a Connor-Mosimann distribution instead of a Dirichlet 

distribution. Also, we speculate that there exist conditions on the distribution of  so that 

perfect aggregation holds for the entire Poisson system whenever perfect aggregation holds 

for the Bernoulli system. 

λ 0

Example 7.5   
 
Let λ  and P 0 ~ (Gamma a b, ) )~ ( ,CM n α η  with prior density given by  
 

g p p p B p pn i i i j
i

i

n
i i( , , ..., ) ( , ) ( )1 2

1 1
1

1
1= − ∑∏ − −

=
=

α η α ξ
j

+1

,  

 
where  for i =1,2,...,n-1 and ξ η α ηi i i i= − −+1 ξ ηn n= −1. Then perfect aggregation holds 

iff  for i mη α ηi i i= ++1 1+ = −1 1,2,...,  and . a m ii
m= + ∑ =η α1

One can show this by proving that the given conditions hold iff  can be 

factored into a function of  and a function of γ, where  is the prior joint density of P . 

λ λ0 0
−n g ( )P

λ gf 0 λ
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Note that if P ~ ( , ..., ; )D n nα α nα1 +1  with α i  (i =1,2,...,n) as given above and α ηn n+ =1 , 

then  for η α ηi i i= ++1 +1 i n= −1,..., 1 α i
n+1

n+1
n

, which implies that and therefore 

. So if 

ηm i m= ∑ = +1

a ii= ∑ = α1 P ~ ( , ..., ; )D n nα α α1 1+  and λ 0 ~ (Gamma a b, )

n= + α1

n+1

, then perfect aggregation 

holds iff a . This coincides with theorem 8.3 given by Azaiez (1993), except that he 

gave  as a sufficient condition only, while we give this as a necessary and 

sufficient condition for perfect aggregation to hold. 

ii∑ =1

a ii= ∑ = α1

The examples above show the usefulness of our results. For example, we extended the 

results of Azaiez from the Dirichlet case to the case of Connor-Mosimann distributions, and 

were able to show the necessity of the sufficient condition Azaiez found in the Dirichlet case. 

However, since perfect aggregation is only one of our two application areas, we do not 

propose to extend these results for Poisson systems in the dissertation, and instead will 

restrict ourselves to studying perfect aggregation in Bernoulli systems. 

 

  


