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Chapter 6 
 
 

Extended Liouville distributions  
 
 

As stated in chapter 1 and section 3.4, one of our concerns in this work is to identify a 

family of distributions that contains the Dirichlet but also contains distributions capable of 

modeling nontrivial dependence structures, as well as satisfying some of the other criteria 

given in section 1.1. This could be done both on the simplex and on the positive orthant. 

Results for the positive orthant will be given in this chapter, while results for the unit simplex 

will be given in chapter 7, particularly in section 7.5.2.   

Section 6.1 delineates a conceptual framework for developing new positive orthant 

family of distributions; one actual extension is given in section 6.2. We will show below that 

both the Liouville and multiple Dickey distributions are contained in this new family. This 

gives us an intellectual framework within which to think about these special cases, which in 

turn provides a basis for selecting between these distributions. Also, our new family gives us 

more flexibility in modeling correlated data, since they can be shown to have significantly 

more general covariance and dependence structures than the standard Liouville distribution. 

Unfortunately, some of our new distributions are not analytically tractable. However, one can 

use Monte Carlo simulation to calculate moments and other performance measures.  

Further motivation for introducing this new family of distributions is provided by the 

recent comment of Fang et al. (1990), who stated that "In analysing so-called ‘compositional 

data,’ scientists have been handicapped by the lack of known distributions to describe 
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various patterns of variability." Aitchison (1986)  has also discussed this problem. Fang et al. 

used the approach outlined in section 4.1 (with a Dirichlet distribution as a base) to come up 

with a new definition for the classical Liouville distribution. Part of our approach in 

developing more new positive orthant family of distributions is to allow for a non-Dirichlet 

base. In general, we will use the term ‘extended Liouville’ to refer to a Liouville distribution 

with a non-Dirichlet base.  

 
6.1 The general idea on the positive orthant 
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yx ⋅= r . We know from chapter 4 that if y  follows the Dirichlet distribution, 

then the distribution of x is the standard Liouville distribution. Our approach here is to allow 

 to follow any one of the simplex distributions. One could call the resultant distribution a 

Liouville distribution with  base. For example, if y  follows the multiple Dickey 

distribution, then the distribution of x could be called a Liouville distribution with multiple 

Dickey base, or a multiple Dickey extended Liouville distribution. Note that the Liouville and 

multiple Dickey distributions are (trivially) special cases of the multiple Dickey extended 

Liouville distribution. Also, since the adaptive Dirichlet family of distributions is a subclass 

of the multiple Dickey family of distributions, the multiple Dickey extended Liouville 

distribution is clearly quite general. This class of distributions will be discussed further in the 

next section.  

y

y

The above illustrates our approach for developing new family of distributions on the 

positive orthant. As we said earlier, this gives us an intellectual framework within which to 
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think about the special cases, which in turn provides a basis for selecting from among these 

distributions. Also, the new family gives us more flexibility in modeling correlated data. In 

the next section, we will document the covariance structures that can be obtained from some 

cases of the multiple Dickey extended Liouville distribution, as a basis for deciding whether 

this is a reasonable model for a particular data set.  

 
6.2 Multiple Dickey extended Liouville distribution  

 
Sivazlian (1981b) studied the standard Liouville distributions because of "their 

underlying generality, the interesting structured properties that they possess, and the better 

insight they provide into some well-known statistical theorems." Gupta and Richards (1987, 

1990, 1991, 1992, 1995) have a series of articles studying the standard Liouville distribution. 

In particular, Gupta and Richards (1992) apply the Liouville distribution to reliability theory 

by studying a k-out-of-n system consisting of components whose lifetimes have a joint 

Liouville distribution. The multiple Dickey extended Liouville distribution will give us more 

flexibility in modeling such correlated data, since it has significantly more general 

covariance and dependence structures than the standard Liouville distribution. 

 Fang et al. (1990) devotes a complete chapter to the properties of the standard Liouville 

distribution. Some properties of the multiple Dickey extended Liouville distribution will be 

given in this section. Other properties can be established by paralleling the development 

given by Fang et al. for the standard Liouville distribution. 

As mentioned in chapter 1, Gupta and Richards (1995) define a class of distributions, 

containing the classical Dirichlet and Liouville distributions, in which the random variables 

are defined on a locally compact Abelian group or semigroup. However, their work is mainly 
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theoretical, and the authors do not give any application of their theory or test their 

distributions against the criteria we have suggested as desirable. Comparing our approach 

with theirs, we believe that their approach is less well suited for practical use than the one we 

propose here. Moreover, we have determined the correlation sign structures, for some 

distributions in our new family, while the sign structures obtainable using their approach are 

still unknown. 

Definition 6.1 A random vector x in  is said to have a multiple Dickey extended 

Liouville distribution if  x
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. We will call z the multiple Dickey base,  the multiple 

Dickey parameters, r the generating variate, and  the generating density. 
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It should be noticed immediately that when the multiple Dickey distribution reduces to 

the Dirichlet distribution, the multiple Dickey extended Liouville distribution reduces to the 

standard Liouville distribution on , and when r=1 with probability one, the multiple 

Dickey extended Liouville distribution reduces to the multiple Dickey distribution 

 on . Also, it is clear from the definition above that 

 if and only if the vector 
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x ~ (MDEL fn α,β,C ( ,..., ) ~ (x x x xi in nMD1 ∑ ∑ α,β,C )  on 

 and is independent of the total size  (equivalent to the random variable r in the 

definition of the multiple Dickey extended Liouville distribution). 
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The following theorem gives the density function of a multiple Dickey extended 

Liouville distribution: 
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Theorem 6.1 The density function of a multiple Dickey extended Liouville distribution with 

generating density function f  is given by  
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 (6.1) 

 
where ,  β , and the other parameters are the same as given in the 

multiple Dickey distribution. 
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Proof 
 
The joint density of the independent random variables z and r is  
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Simplifying this expression and letting α α  and β  gives (6.1).  * = ∑ = ii
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Note that the density given by (6.1) is defined on the a-simplex 

 if and only if  is defined on the interval (0,a). Also, 

since z and r are independent and 

S x x x xa
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f r( )  is itself a density function (and therefore integrates 

to one), the normalizing constant A for the multiple Dickey extended Liouville distribution is 

the same as the normalizing constant associated with the standard multiple Dickey 

distribution. Jiang et al. (1992) give computational methods for determining the constant A in 
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some special cases where it has a closed-form expression. Some of these special cases will be 

discussed below. 

In section 3.4, we showed that the adaptive Dirichlet family of distributions is a subclass 

of the multiple Dickey family. In section 6.2.1 below, we will concentrate on a special case 

of the multiple Dickey extended Liouville distribution where the multiple Dickey base is 

reduced to a type B adaptive Dirichlet distribution. The members of this subclass will be 

called type B extended Liouville distributions; in symbols, EL . We will give 

the density function, moments, and correlation sign structure for distributions of this type. In 

section 6.2.2, we will consider the special case where k=1 (i.e., where the base is a Connor-

Mosimann distribution). The members of this subclass will be called type C extended 

Liouville distribution; in symbols, EL . These cases are considered because their 

moments and densities exhibit certain regularities that makes the moments computationally 

tractable and give us closed form for the densities. 
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6.2.1 Type B Extended Liouville distributions  EL f
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Let  on H  be the base in definition 6.1. The density function of the 

resultant extended Liouville distribution is given below: 
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Corollary 6.1 The density function of a Type B extended Liouville distribution with 

generating density function  is given by   f
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Proof 
 
If  is the density of  r  and , then following the same steps as in the 

proof of theorem 6.1, we get the p.d.f of x as given in (6.2). Also, one can prove this 

corollary by remembering that the type B adaptive Dirichlet is a special case of  the multiple 

Dickey distribution and then using theorem 6.1.  

f z ~ (( )ADn
B α, λ, k)

Moments. The moments of  are given in section 3.3. Since r is 

independent of z, we have 
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 (6.3) 

 
Covariances. To clarify the correlation sign structures, let yi be the ratios associated with the 

vector of fractions z, and define 
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