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9.1 Strategy of analysis 
 

We now describe the procedure used to analyze the simulated data:  
 

1.  Using the parameters of the four independent beta random variates, z1, z2, z3, and z4, we 

calculate the true correlation matrices of both the fractions xi and the ratios yi. 

2.  Based on the topology given in Figure 9.1, we transform each simulated vector of  

fractions x into a vector of ratios y via equations (9.1). For the resulting vectors of ratios, 

we then calculate the empirical correlation matrix. 

3.  All empirical correlations of the  are tested to see whether they are statistically 

significant; the null hypothesis is that a given correlation coefficient ρ  is equal to zero. 

The two-tailed test uses the Student-Fisher t distribution with k-2 degrees of freedom: 
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where  is the empirical sample correlation coefficient and k is the sample size. The 

hypothesis that  is rejected at the significance level p if , a tabulated 

critical value (Hoshmand, 1988). We test this null hypothesis at three levels of 

significance: 0.05; 0.01; and 0.001. 

ρ̂

0=ρ )2,( −> kptt

4.  From the simulated vectors of the ratios y,  we estimate the mixed moments needed to 

compute the means, variances, and covariances of the fractions  according to equations 

(8.7-8.9). These moments are then used to compute the correlations of the fractions  for 

both the model with independent ratios and the three models with dependent ratios. This 

method of fitting is the same as the one that we used in the snowmelt runoff problem, and 

is also the same as that used by Reese and Krzysztofowicz (1989).  

ix

ix
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5.  Finally, for each case, we compute the Euclidean distances, as given by (8.2), between 

the correlation matrix of the  corresponding to each fitted model and the corresponding 

empirical and true correlation matrices. 

ix

The results of our simulation are given in Appendices B-E. 
 
 
9.2 Analysis and results of our simulation 

 
Below we list the questions to be answered by our analysis of each simulated data set:   

 
1. What are the two most strongly correlated ratios (empirically)? 

2. Are the signs of the true (respectively, the empirical) correlations of the  preserved 

under the independent ratios model? 

ix

3. Are the signs of the true (respectively, the empirical)  correlations of the  preserved 

under the dependent ratios model? 

ix

4. Is the Euclidean distance between the true (respectively, the empirical) correlations and 

the correlations of the dependent ratios model at least as small as the distance between 

the true (respectively, the empirical) correlations and the correlations of the independent 

ratios model? 

5. Is the Euclidean distance of the dependent ratios model actually used to generate the data 

(for those data sets with non-zero true correlations) at least as small as the Euclidean 

distances of the other two dependent ratios models? 

6. For those data sets in which the true correlations of the  are all zero (i.e., in Appendix 

E) is the reduction in the Euclidean distance obtained by the dependent ratios model 

smaller than for those data sets in which the  are assumed to be correlated? 

iy

iy
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The detailed answers to the above questions for the simulated data can be found in the tables 

in  Appendices B-E.  

The data for Tables B-1 to B-15 were generated assuming dependence between  and 

. Three of these (Tables B-1, B-3, and B-8) have the signs of the true correlations 

preserved under all four models. Eight of them (Tables B-2, B-4 to B-7, B-11, B-14 and B-

15) have the signs of the true correlations preserved only under the model where  and  

are dependent. In Tables B-10 and B-13, the signs of the true correlations are preserved only 

under the independent ratios model and the model where  and  are dependent. In Table 

B-12, the signs of the true correlations are preserved only under the independent ratios model 

and the model where  and  are dependent. In the remaining case (Table B-9), the signs 

of the true correlations are not preserved under any four of the models. Thus, the model 

where  and  are assumed to be dependent preserves the true correlation sign structures 

for eleven of the fifteen data sets, while the independent ratios model accomplishes this for 

only six of the data sets. When the signs of the empirical correlations (i.e., the correlations 

among the  in the simulated data) are taken to be the reference point in comparing the 

correlation sign structures (rather than the signs of the true correlations), the model where  

and  are assumed to be dependent preserves the empirical correlation sign structures for 

twelve of the fifteen data sets, while the independent ratios model accomplishes this for only 

four of the data sets. 

1y

3y
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1y 2y

2y 3y

1y 3y

ix
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The results in Table B-12 and Table B-13 are not as expected. In particular, the model 

that was actually used to generate the data did not preserve the true sign structure, even 

though the independent ratios model did. Since the independent ratios model is actually just a 
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special case of the dependent ratios model, clearly the observed performance does not 

represent a true limitation of the dependent ratios model, but rather is due to the fitting 

method that was used (which was described above). A suggested alternative fitting method is 

discussed at the end of this chapter. 

The data for Tables C-1 to C-4 were generated assuming dependence between  and . 

In Table C-3, the signs of the true correlations are preserved under all models except the 

model where  and  are assumed to be correlated, which again is unexpected and is 

apparently due to the limitations of our method for fitting the dependent ratios models. In the 

remaining cases, the signs of the true correlations are not preserved under any four of the 

models. When the signs of the empirical correlations are taken to be the reference point 

rather than the signs of the true correlations, then all four models preserve the signs of the 

empirical correlations in Tables C-1 and C-2. In Tables C-3 and C-4, the signs of the 

empirical correlations are preserved only under the model where  and  are dependent. 

Thus, the model that was actually used to generate the data preserves the empirical 

correlation sign structure for all four data sets, while the independent ratios model preserves 

the empirical correlation sign structure for only two of the data sets. 

1y 2y

1y 2y

1y 2y

The data for Tables D-1 to D-4 were generated assuming dependence between  and 

. One of these (Table D-3) has the signs of the true correlations preserved under all four 

models. In the remaining cases (Tables D-1, D-2, and D-4), the signs of the true correlations 

are not preserved under any four of the models. Thus, none of the models are particularly 

successful at preserving the true correlation sign structures for these data sets. When the 

signs of the empirical correlations are taken to be the reference point rather than the signs of 

2y

3y
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the true correlations, Table D-3 has the signs of the empirical correlations preserved under all 

four models. Tables D-1 and D-2 have the signs of the empirical correlations preserved only 

under the model where  and  are dependent. In the remaining case (Table D-4), the 

signs of the empirical correlations are not preserved under any four of the models. Thus, the 

model that was actually used to generate the data preserves the empirical correlation sign 

structure for three of the four data sets, while the independent ratios model accomplishes this 

for only one of the data sets.  

2y 3y

Finally, the data for Tables E-1 to E-4 were generated assuming independence of the 

ratios. Three of these (Tables E-1, E-2, and E-4) have the signs of the true correlations 

preserved under all four models. In Table E-3, the signs of the true correlations are preserved 

under all models except the model where  and  are dependent (note that the results for 

Table E-3 again reflect the limitations of our method for fitting the dependent ratios model). 

Thus, as expected, the independent ratios model does about as well as the dependent ratios 

models for these data sets. Similar results are obtained when the signs of the empirical 

correlations are taken to be the reference point in comparing the correlation sign structures, 

instead of the true correlations.  

1y 2y

A few additional cases were run with the same correlation sign structures as the cases in 

Tables C-2, C-4, D-2, and E-2. The results were roughly similar to those presented here. 

Thus, in our simulation, the dependent ratios model that was actually used to generate the 

simulated data preserved the true correlation sign structure in 12 of the 23 data sets in 

Appendices B-D, while the independent ratios model did this in only eight of the 23 data sets. 

As noted above, the performance of the dependent ratios model appears to be limited by our 

fitting method, and might be substantially better with a different fitting method. Note also 
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that the dependent ratios model performed better for the data sets given in Appendix B 

(where most of the true sign structures are not achievable with independent ratios) than for 

the data sets in Appendices C and D (where over half of the true sign structures are 

achievable with independent ratios). Finally, in all of the cases in which the dependent ratios 

models were not able to preserve the signs of the true correlations, the empirical correlation 

matrix had a different sign structure than the true correlation matrix.  

When the empirical correlation matrix is taken to be the reference point rather than the 

true correlation matrix, the dependent ratios model that was actually used to generate the data 

preserved the empirical correlation sign structures for more than three fourths (19 out of 23) 

of the simulated data sets. By contrast, the independent ratios model preserved the empirical 

sign structures of the correlations in less than one third (seven out of 23) of the data sets. In 

practice, the true correlation sign structure will frequently not be known. Thus, if the aim is 

to match the empirical correlation sign structure of a given data set, our model appears to do 

substantially better than the independent ratios model.  

The Euclidean distances between the true correlations and the correlations induced by the 

particular dependent ratios model that was actually used to generate the data are at least as 

small as the distances between the true correlations and the correlations of the independent 

ratios model in 11 of the 23 data sets created using dependent ratios (i.e., Tables B-1 through 

B-5, B-7, B-8, B-10, B-11, B-15, and C-1). Note that this is only about as good as would be 

expected due to chance alone. With regard to the Euclidean distances from the empirical 

correlations, the dependent ratios model does a better job, achieving smaller Euclidean 

distances than the independent ratios model in all of the 23 data sets generated by the 

dependent ratios model.  
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In fact, choosing the model that yields the smallest Euclidean distance between the model 

correlations and the true correlations in our data would have correctly identified the true 

model in 21 of the 23 dependent cases. While choosing the model in this way would not have 

correctly identified the four independent cases, the difference in Euclidean distance between 

the true (independent) model and the model with the smallest Euclidean distance is relatively 

small (less than a factor of 2 in all four cases). Therefore, one potentially promising strategy 

for model selection would be to choose the independent model unless one of the dependent 

models yields at least some pre-specified (e.g., 33%) reduction in Euclidean distance. Further 

investigation of this approach might be worthwhile. 

In practice, we will frequently be interested in fitting data sets where the true correlations 

of the xi are unknown and only the empirical correlations are available, as in the snowmelt 

runoff problem. Thus, if the goal is to accurately model an observed correlation matrix 

(rather than to correctly detect the underlying process used to generate those correlations), 

the dependent ratios model appears to be a substantial improvement over the independent 

ratios model. This is illustrated by the generally smaller Euclidean distances in Table 9-6 

(distances from the empirical correlation matrix) than in Table 9-5 (distances from the true 

correlation matrix).  

Remember, however, that these results should be regarded as only preliminary. A 

rigorous study of small-sample behavior would need to include more replication of each 

analysis (with different simulation seed values), as well as data sets of different lengths. In 

particular, we would expect our model to do substantially better for very long data sets, in 

which the empirical correlation matrix would  converge to the true correlation matrix.   
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Table 9-5   

Euclidean distances between the true correlations and  

the correlations of the fitted models. 

Fitted model True 
correlated 

pair 

Table 
# Indep. 

ratios  
1y  dep.  2y 1y  dep.  3y 2y dep.  3y

B-1 0.20 0.19 0.19 0.20 
B-2 0.16 0.14 0.12 0.17 
B-3 0.10 0.12 0.09 0.11 
B-4 0.21 0.22 0.16 0.24 
B-5 0.11 0.13 0.06 0.12 
B-6 0.39 0.43 0.40 0.36 
B-7 0.16 0.16 0.14 0.17 
B-8 0.09 0.10 0.05 0.11 
B-9 0.09 0.10 0.09 0.12 
B-10 0.26 0.27 0.25 0.25 
B-11 0.13 0.15 0.08 0.13 
B-12 0.01 0.35 0.04 0.01 
B-13 0.02 0.01 0.05 0.17 
B-14 0.12 0.15 0.17 0.13 

 
 
 
 
 

1y  ,  3y
 
 
 
 

B-15 0.22 0.25 0.17 0.23 
C-1 0.84 0.81 0.84 0.84 
C-2 0.06 0.09 0.06 0.07 
C-3 0.10 0.16 0.09 0.10 

 
1y  ,  2y

C-4 0.48 0.95 0.48 0.48 
D-1 0.49 0.53 0.49 0.84 
D-2 0.33 0.36 0.30 0.39 
D-3 0.14 0.19 0.16 0.16 

 
2y  ,  3y

D-4 0.58 0.56 0.59 0.60 
E-1 0.07 0.09 0.07 0.07 
E-2 0.07 0.08 0.07 0.09 
E-3 0.01 0.05 0.02 0.01 

 
 

None 

E-4 0.15 0.15 0.15 0.13 
 
Note: Bold face used to indicate the smallest Euclidean distance for each data set. 
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Table 9-6 

Euclidean distances between the empirical correlations and  

the correlations of the fitted models. 

Fitted model True 
correlated 

pair 

Table 
# Indep. 

ratios  
1y  dep.  2y 1y  dep.  3y 2y dep.  3y

B-1 0.14 0.15 0.04 0.14 
B-2 0.20 0.18 0.06 0.20 
B-3 0.09 0.08 0.04 0.08 
B-4 0.12 0.13 0.06 0.11 
B-5 0.12 0.12 0.04 0.12 
B-6 0.47 0.44 0.13 0.49 
B-7 0.14 0.16 0.03 0.14 
B-8 0.07 0.07 0.05 0.05 
B-9 0.08 0.07 0.06 0.07 
B-10 0.14 0.16 0.03 0.14 
B-11 0.12 0.12 0.04 0.12 
B-12 0.17 0.25 0.17 0.17 
B-13 0.17 0.17 0.17 0.03 
B-14 0.20 0.22 0.06 0.18 

 
 
 
 
 

 
 

1y  ,  3y
 
 

B-15 0.12 0.11 0.06 0.13 
C-1 0.22 0.04 0.22 0.21 
C-2 0.11 0.08 0.11 0.10 
C-3 0.10 0.04 0.09 0.10 

 
 

1y  ,  2y

C-4 0.62 0.01 0.62 0.62 
D-1 0.50 0.49 0.50 0.05 
D-2 0.58 0.58 0.58 0.06 
D-3 0.14 0.14 0.07 0.14 

 
 

  ,  2y 3y

D-4 0.19 0.19 0.15 0.14 
E-1 0.04 0.03 0.04 0.04 
E-2 0.09 0.09 0.08 0.05 
E-3 0.03 0.06 0.03 0.04 

 
None 

 
 
 E-4 0.06 0.04 0.05 0.07 

 
Note: Bold face used to indicate the smallest Euclidean distance for each data set.  
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9.3 Alternative fitting methods 
 
As mentioned above,  the performance of the dependent ratios model in this simulation 

study appears to be limited by the method used to fit the model to the simulated data sets. In 

particular, the fitting method we used, which was also used by Reese and Krzysztofowicz 

(1989), matches the moments of the , which may not be optimal if the ultimate goal is to 

match the correlations of the . This is clearly not the only possible fitting technique. For 

example, one could attempt to match the moments of the  (while also ensuring that the 

means and variances of the  stay within the bounds imposed by the fact that 

iy

ix

ix

iy 10 ≤≤ iy ). 

However, this approach turns out to be complicated computationally, because of extensive 

nonlinearities in the system of equations to be solved, and is also over-constrained, with 7 

free parameters (the means, variances, and non-zero covariance of the ), but many more 

constraints (three for the means of the , four for the variances of the , and a number of 

inequality constraints for the means, variances, and non-zero covariance of the , 

respectively). 

iy

ix ix

iy

Another interesting approach is to explicitly attempt to minimize the Euclidean distance 

between the empirical and fitted correlation matrices. That approach would in some sense put 

all of the models on the best possible footing for comparison purposes. The resulting 

optimization problem has a nonlinear objective function and a mix of linear and nonlinear 

constraints. 

In this optimization problem, for the model where  and  are allowed to be 

dependent, we have 7 free parameters (the means and the variances of the , and 

1y 3y

iy
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),cov( 31 yy ), and 10 constraints (three each to ensure that the means and variances of the yi 

are within acceptable bounds, and four constraints that must be satisfied by the covariance of 

 and ). This optimization problem is as follows: 1y 3y

 

Minimize  ∑ ∑
= +=

−
3

1

4

1
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where  is the correlation between  and  in the fitted model,  is the 

empirical correlation obtained from the given data set, and 
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However, solution of this optimization problem was considered beyond the scope of this 

dissertation. Further exploration of alternative fitting methods is left for future work. 


