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Chapter 3 
 

Generalizations of the Dirichlet distribution 
 

 
As discussed earlier, the Dirichlet distribution is not sufficiently general to model many 

compositional data sets. Because of the unit-sum constraint given in (2.1), compositional 

data will often tend to be negatively correlated, but compositional data sets can also exhibit 

positive correlation among some of their variables (see for example Reese and 

Krzysztofowicz, 1991). Also, the Dirichlet distribution has strong independence properties. 

Thus, many researchers have searched for improvements on the Dirichlet distribution. In this 

chapter, we will give known generalizations to the Dirichlet distribution on the simplex. 

Other known generalizations that were originally defined on the positive orthant will be 

given in the next chapter. 

 
3.1 Connor-Mosimann distribution ( CM n ( , )α λ ) 
 

In this section, we will give a generalization of the Dirichlet distribution that was 

originally proposed by Connor and Mosimann (1969). Some of its properties are also given 

here. 

Definition 3.1   is said to have a Connor-Mosimann distribution 

 if its density is given by 

x = ( , )x x Sn
n

1 L ∈

)

iξ

x ~ ( ,CM n α λ

g B x x
i

n

i i i jj
ii( ) ( , ) ( )x = ∏ − ∑−

=

−
=

1

1

1
11α λ α , (3.1) 

 



 31
where B i i i i i i( , ) ( ) ( ) ( )α λ α λ α λ= +Γ Γ Γ , ξ λ α λi i i i= − −+1 +1  for i=1,...,n-1, ξn =  

, and  and λ  for all i. λ n −1 α i > 0 i > 0

Note that if we set  (i.e., ξ i = 0 λ α λi i i= ++1 +1 ) for all i=1,...,n-1, we obtain a Dirichlet 

density. 

Connor and Mosimann (1969) constructed this generalization by letting w x1 1= ~  
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 indicates the beta distribution. They then assumed that the w  were independent, 

which yielded the Connor-Mosimann distribution. By theorem 2 of Connor and Mosimann 

(1969), this distribution always has complete right neutrality, since by definition 
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 are independent quantities. Remember, however, that complete 

right neutrality depends on the specified order of the . x i

Connor and Mosimann (1969) discussed the moments of a random vector that has 

complete right neutrality, and gave the following relationships between the covariances of 

the variables in such a vector: 
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Note that equations (3.2) and (3.3) are valid for any random vector that has complete 

right neutrality. Connor and Mosimann noted that equation (3.2) implies cov( , )x x j1 0<  for 

all . Also, since 0j n= 2, ,L +1 1< <L r  for all r, equation (3.3) implies 

cov( , ) ( ) cov( , ) ( ), , , { , , }x x x x i j i j ni j i i< > ⇔ < > < ∈ ++0 0 0 0 2 11 L  (3.4) 
 
We now consider the moments of the Connor-Mosimann distribution CM n ( , )α λ . Let 
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All of the above formulae are due to Connor and Mosimann (1969).  
 

Lochner (1975) studied some properties of the Connor-Mosimann distribution, and 

applied his results to life-testing situations. In particular, he showed that: 
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where . Lochner noted that one can obtain the moments for 

 from the relationships x w  and w x  
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and also proved the following lemma: 
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Lemma 3.1 If  x∈  has the density function given by equation (3.1) and if S n
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for i n= 1,2, ,L . 
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(5)  is monotonically decreasing in var( )x i α j  for j i n≤ ≤ +1. 
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(8) cov( if , ) ( )cov( , )x x x xr s r s> < +1 α αr r> < +( ) 1 . 
 
Finally, Lochner noted that for the Connor-Mosimann distribution,  is 

independent of s for 1

cov( , )x xr s

1≤ < ≤ +r s n , while for the usual Dirichlet distribution  

is independent of both r and s. Further, for some parameter values of the Connor-Mosimann 

distribution, we have  for all 1

cov( , )x xr s

cov( , )x xr s > 0 1< < ≤ +r s n . For example, using property 

(7) above, Lochner considers the case where λ αj jn j= + −( 1  f)
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. Smith (1994) stated that for the Connor-Mosimann distribution, 
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cov( , )x x2 3 0>  if  α λ λ λ α α2 2 1 1 1 1+ > 1+ +( )

)

. Note that in this case by equation (3.4) we 

have  . cov( , )x x j2 0> ∀ >j 2

3.2 Dickey's distributions 
 

Dickey (1968) defined the so-called scaled Dirichlet distribution by letting y ~ (D n+1 α  

and considering the transformation  
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where α  and c  for all i.  The density of x was shown to have the form  i > 0 i > 0
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Aitchison (1986) pointed out that this distribution still retains much of the strong 

independence structure of the Dirichlet distribution. Dickey (1983) further generalized this 

distribution to the Dickey distribution, which has a density of the form 
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where ,  and c  for all i. The multiple Dickey distribution (Dickey, 1983, 

1987) is a generalization of the Dickey distribution, and has a density of the form 
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where , , and C is an α ∈ℜ+
+n 1 β ∈ℜK n K+ ×1  matrix of nonnegative entries. In symbols, 
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The scaled Dirichlet distribution and the Dickey distribution are special cases of the 

conditional generalized Liouville distribution (Smith, 1994), while the multiple Dickey 

distribution is not. Moreover, from the definitions of the conditional generalized Liouville 

distribution and the multiple Dickey distribution, it is easy to note that the former is not a 

special case of the latter. Smith mentioned that it is unclear whether Dickey's distributions 

have the ability to model positive covariance. Multiple Dickey distributions have been used 

in a variety of applications; see for example Dickey et al. (1987), Paulino and Pereira (1992, 

1995), and Queen et al. (1994). 

Dickey et al. (1987) proposed the multiple Dickey family as a prior distribution for finite-

category sampling when some of the observations suffer missing category distinctions. For 

more details, see their paper. The output of this sampling can be either a collection of 

overlapping sets, or a collection of successively nested partitions, in which any two sets are 

either disjoint or nested. In the latter case, Dickey et al. showed that the multiple Dickey 

distribution could be expressed as a transformation of a product of independent Dirichlet 

vectors. A process that gives rise to such a collection of nested partitions can be seen as a 

multi-furcation  process that first divides a unit into m0 parts according to a multinomial 

process with parameters y , where the  are taken to be uncertain and 

Dirichlet distributed; the  resultant part is then divided into m

0 = ( , ,..., )y y y m01 02 0 0
y0

i th
i parts according to another 

multinomial process independent of the first one with parameters , 

where the  are taken to be uncertain and Dirichlet distributed; and so on until this multi-

furcation produces the fractions of interest . This multi-furcation process can be 

represented graphically as shown in Figure 3.1 below:  

y i = ( , , ...,y y yi i imi1 2 )

y i

x x xn1 2 1, ,..., +



 36
 
 

 
 
 
                                                          y01 y02 y i0

y m0 0

                                                       
                                                           ...      ...    ...     ...    ... 
                                         jy02

               ...    ...    ...   ...   ...   ...   ...  ...    011y 012y jy01 101my
 
                         ...    
 

 
x1               ...                 ...                  ...                   ...             ...                 x 2 x3 x n+1

 
Figure 3.1. Multi-furcation topology underlying a collection of successively nested partitions. 
 
 

Jiang et al. (1992) give closed-form expressions for the normalizing constant of the 

multiple Dickey distribution in the case of nested sets. Inference is also considerably 

simplified in this case. In the next section, we give a special case where all of the multi-

furcations are reduced to bifurcations. The resultant family of distributions is called the 

adaptive Dirichlet family, and was constructed independently in 1993 by Krzysztofowicz and 

Reese. Therefore, the adaptive Dirichlet family of distributions is a subclass of the multiple 

Dickey family. 

 
 


